• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHOU Yong-chao, XU Heng-lei, CHEN Jia-dai, ZHANG Yi-ping, TANG Yao, PENG Yu. Particle migration and clogging in porous media with seepage[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 255-263. DOI: 10.11779/CJGE202202006
Citation: ZHOU Yong-chao, XU Heng-lei, CHEN Jia-dai, ZHANG Yi-ping, TANG Yao, PENG Yu. Particle migration and clogging in porous media with seepage[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 255-263. DOI: 10.11779/CJGE202202006

Particle migration and clogging in porous media with seepage

More Information
  • Received Date: January 31, 2021
  • Available Online: September 22, 2022
  • The migration and clogging of fine particles in porous media with seepage are of great significance for preventing the internal erosion of soils and improving the performance of artificial filtration facilities. The migration and clogging in the gravel substrate under the seepage are studied based on the X-CT technology. The results indicate that the migration of particles in porous media generally increases with the increase of seepage velocity, and its influence is significantly different under different particle size ratios. The X-CT results indicate that the particles present a stable vertical distribution in the column and clogging formed under the smaller dss/dfs. However, the vertical accumulative interception curve of particles presents a linear distribution and changes continuously, indicating that the particles penetrate continuously under the higher dss/dfs. On this basis, the threshold whether particles penetrating or clogging is determined. Moreover, the factor of (dss/dfs)2.1Re1.8(tu/H)0.2 is the best dimensionless parameter for calculating the penetration rate of particles, and the relevant formula is developed.
  • [1]
    罗玉龙, 速宝玉, 盛金昌, 等. 对管涌机理的新认识[J]. 岩土工程学报, 2011, 33(12): 1895–1902. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201112014.htm

    LUO Yu-long, SU Bao-yu, Sheng Jin-chang, et al., New understandings on piping mechanism[J], Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1895–1902. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201112014.htm
    [2]
    FELL R, WAN C F, CYGANIEWICZ J, et al. Time for development of internal erosion and piping in embankment dams[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(4): 307–314. doi: 10.1061/(ASCE)1090-0241(2003)129:4(307)
    [3]
    陈星欣, 白冰. 重力对饱和多孔介质中颗粒输运特性的影响[J]. 岩土工程学报, 2012, 34(9): 1661–1667. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201209019.htm

    CHEN Xing-xin, BAI Bing. Effect of gravity on transport of particles in saturated porous media[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1661–1667. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201209019.htm
    [4]
    白冰, 张鹏远, 宋晓明, 等. 渗透作用下多孔介质中悬浮颗粒的迁移过程研究[J]. 岩土工程学报, 2015, 37(10): 1786–1793. doi: 10.11779/CJGE201510006

    BAI Bing, ZHANG Peng-yuan, SONG Xiao-ming, et al. Transport processes of suspended particles in saturated porous media by column seepage tests[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1786–1793. (in Chinese) doi: 10.11779/CJGE201510006
    [5]
    GARCIA A, ABOUFOUL M, ASAMOAH F, et al. Study the influence of the air void topology on porous asphalt clogging[J]. Construction and Building Materials, 2019, 227: 116791. doi: 10.1016/j.conbuildmat.2019.116791
    [6]
    LIU Q, ZHAO B, SANTAMARINA J C. Particle migration and clogging in porous media: a convergent flow microfluidics study[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(9): 9495–9504. doi: 10.1029/2019JB017813
    [7]
    YE X Y, CUI R J, DU X Q, et al. Mechanism of suspended kaolinite particle clogging in porous media during managed aquifer recharge[J]. Groundwater, 2019, 57(5): 764–771. doi: 10.1111/gwat.12872
    [8]
    DU X Q, YE X Y, ZHANG X W. Clogging of saturated porous media by silt-sized suspended solids under varying physical conditions during managed aquifer recharge[J]. Hydrological Processes, 2018, 32(14): 2254–2262. doi: 10.1002/hyp.13162
    [9]
    GERBER G, RODTS S, AIMEDIEU P, et al. Particle-size- exclusion clogging regimes in porous media[J]. Physical Review Letters, 2018, 120(14): 148001. doi: 10.1103/PhysRevLett.120.148001
    [10]
    ZHANG J, SHE R, DAI Z X, et al. Experimental simulation study on pore clogging mechanism of porous pavement[J]. Construction and Building Materials, 2018, 187: 803–818. doi: 10.1016/j.conbuildmat.2018.07.199
    [11]
    HUA G F, ZHU W, ZHAO L F, et al. Clogging pattern in vertical-flow constructed wetlands: Insight from a laboratory study[J]. Journal of Hazardous Materials, 2010, 180(1/2/3): 668–674.
    [12]
    ZHANG J, MA G D, DAI Z X, et al. Numerical study on pore clogging mechanism in pervious pavements[J]. Journal of Hydrology, 2018, 565: 589–598. doi: 10.1016/j.jhydrol.2018.08.072
    [13]
    ALEM A, ELKAWAFI A, AHFIR N D, et al. Filtration of kaolinite particles in a saturated porous medium: hydrodynamic effects[J]. Hydrogeology Journal, 2013, 21(3): 573–586. doi: 10.1007/s10040-012-0948-x
    [14]
    GIBSON S, ABRAHAM D, HEATH R, et al. Vertical gradational variability of fines deposited in a gravel framework[J]. Sedimentology, 2009, 56(3): 661–676. doi: 10.1111/j.1365-3091.2008.00991.x
    [15]
    HUSTON D L, FOX J F. Clogging of fine sediment within gravel substrates: dimensional analysis and macroanalysis of experiments in hydraulic flumes[J]. Journal of Hydraulic Engineering, 2015, 141(8): 04015015. doi: 10.1061/(ASCE)HY.1943-7900.0001015
    [16]
    王子佳. 城市雨洪水地下回灌过程中悬浮物堵塞规律的实验研究[D]. 长春: 吉林大学, 2012.

    WANG Zi-jia, Laboratory Research on the Law of Suspended Solids Clogging During Urban Stormwater Groundwater Recharge[D]. Changchun: Jilin University, 2012. (in Chinese)
    [17]
    GARNER S J, FANNIN R J. Understanding internal erosion: a decade of research following a sinkhole event[J]. International Journal on Hydropower and Dams, 2010, 17(3): 93–98.
    [18]
    WU F C, HUANG H T. Hydraulic resistance induced by deposition of sediment in porous medium[J]. Journal of Hydraulic Engineering, 2000, 126(7): 547–551. doi: 10.1061/(ASCE)0733-9429(2000)126:7(547)
    [19]
    REIDENBACH M A, LIMM M, HONDZO M, et al. Effects of bed roughness on boundary layer mixing and mass flux across the sediment-water interface[J]. Water Resources Research, 2010, 46(7): W07530.
    [20]
    FLACK K A, SCHULTZ M P, BARROS J M. Skin friction measurements of systematically-varied roughness: probing the role of roughness amplitude and skewness[J]. Flow, Turbulence and Combustion, 2020, 104(2/3): 317–329.
    [21]
    CHAPUIS R P, AUBERTIN M. On the use of the Kozeny–Carman equation to predict the hydraulic conductivity of soils[J]. Canadian Geotechnical Journal, 2003, 40(3): 616–628. doi: 10.1139/t03-013
  • Related Articles

    [1]SUN Jiansheng. Theoretical model for limit equilibrium anti-sliding stability of stress vectors on three-dimensional sliding surface based on projection direction extreme principle[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(12): 2629-2641. DOI: 10.11779/CJGE20230949
    [2]REN San-shao, ZHANG Yong-shuang, XU Neng-xiong, WU Rui-an. Mesoscopic response mechanism of shear surface roughness and residual strength in gravelly sliding zone soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1473-1482. DOI: 10.11779/CJGE202108012
    [3]ZENG Hong-yan, HAN Li-biao, ZHOU Cheng, LIU Wei, TAN Chang-ming. Model tests and numerical analysis of slopes reinforced by short anti-sliding piles[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 132-136. DOI: 10.11779/CJGE2020S1026
    [4]LIU Hu-hu, MIAO Hai-bo, CHEN Zhi-wei, HUANG Jin-yong. Shear creep behaviors of sliding-zone soil of bedding landslide in Jurassic stratum in Three Gorges Reservoir area[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1573-1580. DOI: 10.11779/CJGE201908024
    [5]CHEN Wen-wu, LIU Peng, LIU Wei, LIN Gao-chao, XU He. Suction tests on sliding soil in interface landslide based on filter paper method[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 112-117. DOI: 10.11779/CJGE2018S1018
    [6]CHEN Qiong, XIANG Wei, CUI De-shan, LIU Qing-bing, ZHANG Qian. Adsorption of nitrogen and water vapor by sliding zone soils of Huangtupo landslide[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 691-696.
    [7]Approximate theoretical solution of distribution modes of landslide thrust on anti-sliding piles in soil-like slopes or landslides[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1).
    [8]LONG Jianhui, LI Tonglu, LEI Xiaofeng, YANG Sheqiang. Study on physical properties of soil in sliding zone of loess landslip[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(2): 289-293.
    [9]LI Dongtian, YU Yunhua. Layer analysis method for rock slope stability and the image and spectrum of slide resistance factor[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(1): 18-22.
    [10]Zhou Ruizhong. Regularity of Rock Bursts andits Analysis Based on Fracture Mechanics[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(6): 111-117.
  • Cited by

    Periodical cited type(5)

    1. 楼晓明,孙逸玮,张蓟. 软土地基沟渠开挖诱发远处围堰失稳的实例分析. 水利水电技术(中英文). 2024(S1): 151-159 .
    2. 高玉峰,王玉杰,张飞,姬建,陈亮,倪钧钧,张卫杰,宋健,杨尚川. 边坡工程与堤坝工程研究进展. 土木工程学报. 2024(08): 97-118 .
    3. 郭双枫,何嘉元,张志华,张鹏,李宁,朱锐. 双层土质滑坡临界滑动面判识与失稳机理研究. 防灾减灾工程学报. 2024(05): 1020-1029 .
    4. 穆保岗,王志强. 考虑坡顶裂隙分布特征的包山墙稳定性研究. 特种结构. 2023(02): 1-7 .
    5. 李生清. 基于GA-Sarma算法的边坡最不利滑裂面搜索方法. 地质与勘探. 2022(04): 887-894 .

    Other cited types(5)

Catalog

    Article views (349) PDF downloads (391) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return