Citation: | ZHOU Yong-chao, XU Heng-lei, CHEN Jia-dai, ZHANG Yi-ping, TANG Yao, PENG Yu. Particle migration and clogging in porous media with seepage[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 255-263. DOI: 10.11779/CJGE202202006 |
[1] |
罗玉龙, 速宝玉, 盛金昌, 等. 对管涌机理的新认识[J]. 岩土工程学报, 2011, 33(12): 1895–1902. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201112014.htm
LUO Yu-long, SU Bao-yu, Sheng Jin-chang, et al., New understandings on piping mechanism[J], Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1895–1902. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201112014.htm
|
[2] |
FELL R, WAN C F, CYGANIEWICZ J, et al. Time for development of internal erosion and piping in embankment dams[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(4): 307–314. doi: 10.1061/(ASCE)1090-0241(2003)129:4(307)
|
[3] |
陈星欣, 白冰. 重力对饱和多孔介质中颗粒输运特性的影响[J]. 岩土工程学报, 2012, 34(9): 1661–1667. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201209019.htm
CHEN Xing-xin, BAI Bing. Effect of gravity on transport of particles in saturated porous media[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1661–1667. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201209019.htm
|
[4] |
白冰, 张鹏远, 宋晓明, 等. 渗透作用下多孔介质中悬浮颗粒的迁移过程研究[J]. 岩土工程学报, 2015, 37(10): 1786–1793. doi: 10.11779/CJGE201510006
BAI Bing, ZHANG Peng-yuan, SONG Xiao-ming, et al. Transport processes of suspended particles in saturated porous media by column seepage tests[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1786–1793. (in Chinese) doi: 10.11779/CJGE201510006
|
[5] |
GARCIA A, ABOUFOUL M, ASAMOAH F, et al. Study the influence of the air void topology on porous asphalt clogging[J]. Construction and Building Materials, 2019, 227: 116791. doi: 10.1016/j.conbuildmat.2019.116791
|
[6] |
LIU Q, ZHAO B, SANTAMARINA J C. Particle migration and clogging in porous media: a convergent flow microfluidics study[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(9): 9495–9504. doi: 10.1029/2019JB017813
|
[7] |
YE X Y, CUI R J, DU X Q, et al. Mechanism of suspended kaolinite particle clogging in porous media during managed aquifer recharge[J]. Groundwater, 2019, 57(5): 764–771. doi: 10.1111/gwat.12872
|
[8] |
DU X Q, YE X Y, ZHANG X W. Clogging of saturated porous media by silt-sized suspended solids under varying physical conditions during managed aquifer recharge[J]. Hydrological Processes, 2018, 32(14): 2254–2262. doi: 10.1002/hyp.13162
|
[9] |
GERBER G, RODTS S, AIMEDIEU P, et al. Particle-size- exclusion clogging regimes in porous media[J]. Physical Review Letters, 2018, 120(14): 148001. doi: 10.1103/PhysRevLett.120.148001
|
[10] |
ZHANG J, SHE R, DAI Z X, et al. Experimental simulation study on pore clogging mechanism of porous pavement[J]. Construction and Building Materials, 2018, 187: 803–818. doi: 10.1016/j.conbuildmat.2018.07.199
|
[11] |
HUA G F, ZHU W, ZHAO L F, et al. Clogging pattern in vertical-flow constructed wetlands: Insight from a laboratory study[J]. Journal of Hazardous Materials, 2010, 180(1/2/3): 668–674.
|
[12] |
ZHANG J, MA G D, DAI Z X, et al. Numerical study on pore clogging mechanism in pervious pavements[J]. Journal of Hydrology, 2018, 565: 589–598. doi: 10.1016/j.jhydrol.2018.08.072
|
[13] |
ALEM A, ELKAWAFI A, AHFIR N D, et al. Filtration of kaolinite particles in a saturated porous medium: hydrodynamic effects[J]. Hydrogeology Journal, 2013, 21(3): 573–586. doi: 10.1007/s10040-012-0948-x
|
[14] |
GIBSON S, ABRAHAM D, HEATH R, et al. Vertical gradational variability of fines deposited in a gravel framework[J]. Sedimentology, 2009, 56(3): 661–676. doi: 10.1111/j.1365-3091.2008.00991.x
|
[15] |
HUSTON D L, FOX J F. Clogging of fine sediment within gravel substrates: dimensional analysis and macroanalysis of experiments in hydraulic flumes[J]. Journal of Hydraulic Engineering, 2015, 141(8): 04015015. doi: 10.1061/(ASCE)HY.1943-7900.0001015
|
[16] |
王子佳. 城市雨洪水地下回灌过程中悬浮物堵塞规律的实验研究[D]. 长春: 吉林大学, 2012.
WANG Zi-jia, Laboratory Research on the Law of Suspended Solids Clogging During Urban Stormwater Groundwater Recharge[D]. Changchun: Jilin University, 2012. (in Chinese)
|
[17] |
GARNER S J, FANNIN R J. Understanding internal erosion: a decade of research following a sinkhole event[J]. International Journal on Hydropower and Dams, 2010, 17(3): 93–98.
|
[18] |
WU F C, HUANG H T. Hydraulic resistance induced by deposition of sediment in porous medium[J]. Journal of Hydraulic Engineering, 2000, 126(7): 547–551. doi: 10.1061/(ASCE)0733-9429(2000)126:7(547)
|
[19] |
REIDENBACH M A, LIMM M, HONDZO M, et al. Effects of bed roughness on boundary layer mixing and mass flux across the sediment-water interface[J]. Water Resources Research, 2010, 46(7): W07530.
|
[20] |
FLACK K A, SCHULTZ M P, BARROS J M. Skin friction measurements of systematically-varied roughness: probing the role of roughness amplitude and skewness[J]. Flow, Turbulence and Combustion, 2020, 104(2/3): 317–329.
|
[21] |
CHAPUIS R P, AUBERTIN M. On the use of the Kozeny–Carman equation to predict the hydraulic conductivity of soils[J]. Canadian Geotechnical Journal, 2003, 40(3): 616–628. doi: 10.1139/t03-013
|
[1] | SUN Jiansheng. Theoretical model for limit equilibrium anti-sliding stability of stress vectors on three-dimensional sliding surface based on projection direction extreme principle[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(12): 2629-2641. DOI: 10.11779/CJGE20230949 |
[2] | REN San-shao, ZHANG Yong-shuang, XU Neng-xiong, WU Rui-an. Mesoscopic response mechanism of shear surface roughness and residual strength in gravelly sliding zone soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1473-1482. DOI: 10.11779/CJGE202108012 |
[3] | ZENG Hong-yan, HAN Li-biao, ZHOU Cheng, LIU Wei, TAN Chang-ming. Model tests and numerical analysis of slopes reinforced by short anti-sliding piles[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 132-136. DOI: 10.11779/CJGE2020S1026 |
[4] | LIU Hu-hu, MIAO Hai-bo, CHEN Zhi-wei, HUANG Jin-yong. Shear creep behaviors of sliding-zone soil of bedding landslide in Jurassic stratum in Three Gorges Reservoir area[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1573-1580. DOI: 10.11779/CJGE201908024 |
[5] | CHEN Wen-wu, LIU Peng, LIU Wei, LIN Gao-chao, XU He. Suction tests on sliding soil in interface landslide based on filter paper method[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 112-117. DOI: 10.11779/CJGE2018S1018 |
[6] | CHEN Qiong, XIANG Wei, CUI De-shan, LIU Qing-bing, ZHANG Qian. Adsorption of nitrogen and water vapor by sliding zone soils of Huangtupo landslide[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 691-696. |
[7] | Approximate theoretical solution of distribution modes of landslide thrust on anti-sliding piles in soil-like slopes or landslides[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1). |
[8] | LONG Jianhui, LI Tonglu, LEI Xiaofeng, YANG Sheqiang. Study on physical properties of soil in sliding zone of loess landslip[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(2): 289-293. |
[9] | LI Dongtian, YU Yunhua. Layer analysis method for rock slope stability and the image and spectrum of slide resistance factor[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(1): 18-22. |
[10] | Zhou Ruizhong. Regularity of Rock Bursts andits Analysis Based on Fracture Mechanics[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(6): 111-117. |