Citation: | HU Kai, GAO Xiaowei, XU Bingbing, ZHENG Yingren. Element differential method for poroelastic problems[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(11): 2403-2410. DOI: 10.11779/CJGE20221022 |
[1] |
TERZAGHI K. Theoretical Soil Mechanics[M]. New York: John Wiley and Sons. 1943.
|
[2] |
BIOT M A. General theory of three-dimensional consolidation[J]. Journal of Applied Physics, 1941, 12(2): 155-164. doi: 10.1063/1.1712886
|
[3] |
BIOT M A. Theory of propagation of elastic waves in a fluid — saturated porous solid[J]. Journal of the Acoustical Society of America, 1956, 28: 168-191. doi: 10.1121/1.1908239
|
[4] |
BORJA R I. Finite element formulation for transient pore pressure dissipation: a variational approach[J]. International Journal of Solids and Structures, 1986, 22(11): 1201-1211. doi: 10.1016/0020-7683(86)90076-4
|
[5] |
SANDHU R S, WILSON E L. Finite-element analysis of seepage in elastic media[J]. Journal of the Engineering Mechanics Division, 1969, 95(3): 641-652. doi: 10.1061/JMCEA3.0001124
|
[6] |
KADEETHUM T, LEE S, NICK H M. Correction to: finite element solvers for biot's poroelasticity equations in porous media[J]. Mathematical Geosciences, 2021, 53(5): 1095. doi: 10.1007/s11004-021-09942-0
|
[7] |
GHASSEMI A, CHENG A H D, DIEK A, et al. A complete plane strain fictitious stress boundary element method for poroelastic media[J]. Engineering Analysis With Boundary Elements, 2001, 25(1): 41-48. doi: 10.1016/S0955-7997(00)00046-1
|
[8] |
SOARES D. Iterative dynamic analysis of linear and nonlinear fully saturated porous media considering edge-based smoothed meshfree techniques[J]. Computer Methods in Applied Mechanics and Engineering, 2013, 253: 73-88. doi: 10.1016/j.cma.2012.10.010
|
[9] |
KHOSHGHALB A, KHALILI N. A stable meshfree method for fully coupled flow-deformation analysis of saturated porous media[J]. Computers and Geotechnics, 2010, 37(6): 789-795. doi: 10.1016/j.compgeo.2010.06.005
|
[10] |
邸元, 唐小微. 饱和多孔介质大变形分析的一种有限元-有限体积混合方法[J]. 计算力学学报, 2008, 25(4): 483-487, 493. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG200804016.htm
DI Yuan, TANG Xiaowei. An finite element-finite volume hybrid method for large deformation analysis of porous media[J]. Chinese Journal of Computational Mechanics, 2008, 25(4): 483-487, 493. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG200804016.htm
|
[11] |
PERAZZO F, LÖHNER R, PEREZ-POZO L. Adaptive methodology for meshless finite point method[J]. Advances in Engineering Software, 2008, 39(3): 156-166. doi: 10.1016/j.advengsoft.2007.02.007
|
[12] |
高效伟, 徐兵兵, 吕军, 等. 自由单元法及其在结构分析中的应用[J]. 力学学报, 2019, 51(3): 703-713. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201903005.htm
GAO Xiaowei, XU Bingbing, LÜ Jun, et al. Free element method and its application in structural analysis[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 703-713. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201903005.htm
|
[13] |
GAO X W, GAO L F, ZHANG Y, et al. Free element collocation method: a new method combining advantages of finite element and mesh free methods[J]. Computers & Structures, 2019, 215: 10-26.
|
[14] |
FANTUZZI N. New insights into the strong formulation finiteelement method for solving elastostatic andelastodynamic problems[J]. Curved and Layered Structures, 2014, 1(1): 94-127.
|
[15] |
TORNABENE F, FANTUZZI N, BACCIOCCHI M. The GDQ method for the free vibration analysis of arbitrarily shaped laminated composite shells using a NURBS-based isogeometric approach[J]. Composite Structures, 2016, 154: 190-218. doi: 10.1016/j.compstruct.2016.07.041
|
[16] |
樊礼恒, 王东东, 刘宇翔, 等. 节点梯度光滑有限元配点法[J]. 力学学报, 2021, 53(2): 467-481. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202102013.htm
FAN Liheng, WANG Dongdong, LIU Yuxiang, et al. A finite element collocation method with smoothed nodal gradients[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 467-481. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202102013.htm
|
[17] |
GAO X W, HUANG S Z, CUI M A, et al. Element differential method for solving general heat conduction problems[J]. International Journal of Heat and Mass Transfer, 2017, 115: 882-894. doi: 10.1016/j.ijheatmasstransfer.2017.08.039
|
[18] |
GAO X W, LI Z Y, YANG K, et al. Element differential method and its application in thermal-mechanical problems[J]. International Journal for Numerical Methods in Engineering, 2018, 113(1): 82-108. doi: 10.1002/nme.5604
|
[19] |
CUI M A, XU B B, LV J, et al. Numerical solution of multi-dimensional transient nonlinear heat conduction problems with heat sources by an extended element differential method[J]. International Journal of Heat and Mass Transfer, 2018, 126: 1111-1119. doi: 10.1016/j.ijheatmasstransfer.2018.05.100
|
[20] |
GAO X W, LIU H Y, XU B B, et al. Element differential method with the simplest quadrilateral and hexahedron quadratic elements for solving heat conduction problems[J]. Numerical Heat Transfer, Part B: Fundamentals, 2018, 73(4): 206-224. doi: 10.1080/10407790.2018.1461491
|
[21] |
LV J, SONG C, GAO X W. Element differential method for free and forced vibration analysis for solids[J]. International Journal of Mechanical Sciences, 2019, 151: 828-841. doi: 10.1016/j.ijmecsci.2018.12.032
|
[22] |
LV J, SHAO M J, CUI M A, et al. An efficient collocation approach for piezoelectric problems based on the element differential method[J]. Composite Structures, 2019, 230: 111483. doi: 10.1016/j.compstruct.2019.111483
|
[23] |
胡凯, 高效伟, 徐兵兵. 求解固体力学问题的强-弱耦合形式单元微分法[J]. 力学学报, 2022, 54(7): 2050-2058. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202207026.htm
HU Kai, GAO Xiaowei, XU Bingbing. Strong weak coupling form element differential method for solving solid mechanics problems[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(7): 2050-2058. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202207026.htm
|
[24] |
ZHENG Y T, GAO X W, LV J, et al. Weak-form element differential method for solving mechanics and heat conduction problems with abruptly changed boundary conditions[J]. International Journal for Numerical Methods in Engineering, 2020, 121(16): 3722-3741.
|
[25] |
TERZAGHI K. Die berechnung der durchlassigkeitsziffer des tones aus dem verlauf der hydrodynamischen spannungsercheinungen[J]. Sitzungsbere Akad Wissen Wien Math Naturwis, 1923(132): 105-124.
|
[26] |
ALEXANDER H, CHENG D. Poroelasticity[M]. Switzerland: Springer Cham, 2016.
|
[27] |
GAO X W, LIU H Y, LV J, et al. A novel element differential method for solid mechanical problems using isoparametric triangular and tetrahedral elements[J]. Computers & Mathematics With Applications, 2019, 78(11): 3563-3585.
|