• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HU Kai, GAO Xiaowei, XU Bingbing, ZHENG Yingren. Element differential method for poroelastic problems[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(11): 2403-2410. DOI: 10.11779/CJGE20221022
Citation: HU Kai, GAO Xiaowei, XU Bingbing, ZHENG Yingren. Element differential method for poroelastic problems[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(11): 2403-2410. DOI: 10.11779/CJGE20221022

Element differential method for poroelastic problems

More Information
  • Received Date: August 18, 2022
  • Available Online: March 09, 2023
  • A numerical model for solving the coupling problem of fluid flow and solid mechanics in porous media is established based on the Biot's consolidation theory, and the numerical analysis and calculation are carried out by using a new strong-form finite element method (element differential method, EDM). By comparing with the weak-form methods, the control equation for poroelastic problems can be discretized directly by the element differential method without any numerical integration calculation. Therefore, the method has a relatively simple discrete format when solving the multi-field coupling problem, and it shows high efficiency when calculating the coefficient matrix. The numerical method uses the Lagrange element in the finite element method, which can obtain relatively accurate and stable results compared with the strong-form meshless method. By introducing the element differential method and the implicit time iteration scheme, the displacement and pore pressure of each time step in the porous media can be calculated directly. Two classical numerical models are selected, one is the one-dimensional Terzaghi column model, and the other is the two-dimensional saturated soil zone model. For these two problems, the accuracy and stability of the proposed are verified by comparing with the results of analytical solution and finite element method.
  • [1]
    TERZAGHI K. Theoretical Soil Mechanics[M]. New York: John Wiley and Sons. 1943.
    [2]
    BIOT M A. General theory of three-dimensional consolidation[J]. Journal of Applied Physics, 1941, 12(2): 155-164. doi: 10.1063/1.1712886
    [3]
    BIOT M A. Theory of propagation of elastic waves in a fluid — saturated porous solid[J]. Journal of the Acoustical Society of America, 1956, 28: 168-191. doi: 10.1121/1.1908239
    [4]
    BORJA R I. Finite element formulation for transient pore pressure dissipation: a variational approach[J]. International Journal of Solids and Structures, 1986, 22(11): 1201-1211. doi: 10.1016/0020-7683(86)90076-4
    [5]
    SANDHU R S, WILSON E L. Finite-element analysis of seepage in elastic media[J]. Journal of the Engineering Mechanics Division, 1969, 95(3): 641-652. doi: 10.1061/JMCEA3.0001124
    [6]
    KADEETHUM T, LEE S, NICK H M. Correction to: finite element solvers for biot's poroelasticity equations in porous media[J]. Mathematical Geosciences, 2021, 53(5): 1095. doi: 10.1007/s11004-021-09942-0
    [7]
    GHASSEMI A, CHENG A H D, DIEK A, et al. A complete plane strain fictitious stress boundary element method for poroelastic media[J]. Engineering Analysis With Boundary Elements, 2001, 25(1): 41-48. doi: 10.1016/S0955-7997(00)00046-1
    [8]
    SOARES D. Iterative dynamic analysis of linear and nonlinear fully saturated porous media considering edge-based smoothed meshfree techniques[J]. Computer Methods in Applied Mechanics and Engineering, 2013, 253: 73-88. doi: 10.1016/j.cma.2012.10.010
    [9]
    KHOSHGHALB A, KHALILI N. A stable meshfree method for fully coupled flow-deformation analysis of saturated porous media[J]. Computers and Geotechnics, 2010, 37(6): 789-795. doi: 10.1016/j.compgeo.2010.06.005
    [10]
    邸元, 唐小微. 饱和多孔介质大变形分析的一种有限元-有限体积混合方法[J]. 计算力学学报, 2008, 25(4): 483-487, 493. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG200804016.htm

    DI Yuan, TANG Xiaowei. An finite element-finite volume hybrid method for large deformation analysis of porous media[J]. Chinese Journal of Computational Mechanics, 2008, 25(4): 483-487, 493. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG200804016.htm
    [11]
    PERAZZO F, LÖHNER R, PEREZ-POZO L. Adaptive methodology for meshless finite point method[J]. Advances in Engineering Software, 2008, 39(3): 156-166. doi: 10.1016/j.advengsoft.2007.02.007
    [12]
    高效伟, 徐兵兵, 吕军, 等. 自由单元法及其在结构分析中的应用[J]. 力学学报, 2019, 51(3): 703-713. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201903005.htm

    GAO Xiaowei, XU Bingbing, LÜ Jun, et al. Free element method and its application in structural analysis[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 703-713. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201903005.htm
    [13]
    GAO X W, GAO L F, ZHANG Y, et al. Free element collocation method: a new method combining advantages of finite element and mesh free methods[J]. Computers & Structures, 2019, 215: 10-26.
    [14]
    FANTUZZI N. New insights into the strong formulation finiteelement method for solving elastostatic andelastodynamic problems[J]. Curved and Layered Structures, 2014, 1(1): 94-127.
    [15]
    TORNABENE F, FANTUZZI N, BACCIOCCHI M. The GDQ method for the free vibration analysis of arbitrarily shaped laminated composite shells using a NURBS-based isogeometric approach[J]. Composite Structures, 2016, 154: 190-218. doi: 10.1016/j.compstruct.2016.07.041
    [16]
    樊礼恒, 王东东, 刘宇翔, 等. 节点梯度光滑有限元配点法[J]. 力学学报, 2021, 53(2): 467-481. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202102013.htm

    FAN Liheng, WANG Dongdong, LIU Yuxiang, et al. A finite element collocation method with smoothed nodal gradients[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 467-481. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202102013.htm
    [17]
    GAO X W, HUANG S Z, CUI M A, et al. Element differential method for solving general heat conduction problems[J]. International Journal of Heat and Mass Transfer, 2017, 115: 882-894. doi: 10.1016/j.ijheatmasstransfer.2017.08.039
    [18]
    GAO X W, LI Z Y, YANG K, et al. Element differential method and its application in thermal-mechanical problems[J]. International Journal for Numerical Methods in Engineering, 2018, 113(1): 82-108. doi: 10.1002/nme.5604
    [19]
    CUI M A, XU B B, LV J, et al. Numerical solution of multi-dimensional transient nonlinear heat conduction problems with heat sources by an extended element differential method[J]. International Journal of Heat and Mass Transfer, 2018, 126: 1111-1119. doi: 10.1016/j.ijheatmasstransfer.2018.05.100
    [20]
    GAO X W, LIU H Y, XU B B, et al. Element differential method with the simplest quadrilateral and hexahedron quadratic elements for solving heat conduction problems[J]. Numerical Heat Transfer, Part B: Fundamentals, 2018, 73(4): 206-224. doi: 10.1080/10407790.2018.1461491
    [21]
    LV J, SONG C, GAO X W. Element differential method for free and forced vibration analysis for solids[J]. International Journal of Mechanical Sciences, 2019, 151: 828-841. doi: 10.1016/j.ijmecsci.2018.12.032
    [22]
    LV J, SHAO M J, CUI M A, et al. An efficient collocation approach for piezoelectric problems based on the element differential method[J]. Composite Structures, 2019, 230: 111483. doi: 10.1016/j.compstruct.2019.111483
    [23]
    胡凯, 高效伟, 徐兵兵. 求解固体力学问题的强-弱耦合形式单元微分法[J]. 力学学报, 2022, 54(7): 2050-2058. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202207026.htm

    HU Kai, GAO Xiaowei, XU Bingbing. Strong weak coupling form element differential method for solving solid mechanics problems[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(7): 2050-2058. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202207026.htm
    [24]
    ZHENG Y T, GAO X W, LV J, et al. Weak-form element differential method for solving mechanics and heat conduction problems with abruptly changed boundary conditions[J]. International Journal for Numerical Methods in Engineering, 2020, 121(16): 3722-3741.
    [25]
    TERZAGHI K. Die berechnung der durchlassigkeitsziffer des tones aus dem verlauf der hydrodynamischen spannungsercheinungen[J]. Sitzungsbere Akad Wissen Wien Math Naturwis, 1923(132): 105-124.
    [26]
    ALEXANDER H, CHENG D. Poroelasticity[M]. Switzerland: Springer Cham, 2016.
    [27]
    GAO X W, LIU H Y, LV J, et al. A novel element differential method for solid mechanical problems using isoparametric triangular and tetrahedral elements[J]. Computers & Mathematics With Applications, 2019, 78(11): 3563-3585.
  • Related Articles

    [1]Discrete element analysis of macro- and micro- mechanical properties of methane hydrate bearing clay under different salinity[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20231117
    [2]YANG Shengqi, JING Xiaojiao. Experimental study on physical and mechanical properties of sandstone after drying-wetting cycles of brine[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2165-2171. DOI: 10.11779/CJGE20220830
    [3]ZHANG Qiang, WANG Xiao-gang, ZHAO Yu-fei, ZHOU Jia-wen, MENG Qing-xiang, ZHOU Meng-jia. Discrete element simulation of large-scale triaxial tests on soil-rock mixtures based on flexible loading of confining pressure[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1545-1554. DOI: 10.11779/CJGE201908020
    [4]JIANG Ming-jing, LIAO You-bin, LIU Wei, TAN Ya-fei-ou. DEM simulation of mechanical behaviour of cemented sand under normal distribution of cementation strength[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 1-6. DOI: 10.11779/CJGE2016S2001
    [5]JIANG Ming-jing, FU Chang, LIU Jing-de, ZHANG Fu-guang. DEM simulations of anisotropic structured sand with different deposit directions[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 138-146. DOI: 10.11779/CJGE201601015
    [6]JIANG Ming-jing, LI Lei, ZHOU Ya-ping. Bearing properties of deep-sea methane hydrate-bearing foundation by discrete element method[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 343-350. DOI: 10.11779/CJGE201502019
    [7]JIANG Ming-jing, XIAO Yu, ZHU Fang-yuan. Numerical simulation of macro-mechanical properties of deep-sea methane hydrate bearing soils by DEM[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 157-163.
    [8]Coupling method of two-dimensional discontinuum-continuum based on contact between particle and element[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(10).
    [9]LIU Shiqi, LI Haibo, LI Junru. Mechanical properties of rock material under dynamic uniaxial tension[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(12): 1904-1907.
    [10]ZHANG Hongwu, QIN Jianmin. Simulation of mechanical behaviors of granular materials by discrete element method based on mesoscale nonlinear contact law[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(11): 1964-1969.

Catalog

    Article views (236) PDF downloads (65) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return