• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Ke-fen, ZHANG Sheng, TENG Ji-dong, SHENG Dai-chao. Influences of self-organization of granular materials on particle crushing based on discrete element method[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 743-751. DOI: 10.11779/CJGE201804019
Citation: ZHANG Ke-fen, ZHANG Sheng, TENG Ji-dong, SHENG Dai-chao. Influences of self-organization of granular materials on particle crushing based on discrete element method[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 743-751. DOI: 10.11779/CJGE201804019

Influences of self-organization of granular materials on particle crushing based on discrete element method

More Information
  • Received Date: January 17, 2017
  • Published Date: April 24, 2018
  • Starting from the Apollonian sphere packing method in mathematics, four kinds of self-organization of breakage are established, and the linear expansion method is introduced to guarantee the mass conservation. On this basis, the numerical experiments on different self-organizations are carried out, and the influences of self-organization on gradation evolution and macro and micro mechanical behaviors of granular materials are studied. It is found that the fractal dimension and the average inter-particle stress decrease with the increase of fragment number, while the relative breakage Br and the compressibility increase with the increase of particle number in the self-organization. The anisotropic rose diagram of contact orientation and contact normal force show that the larger the number of particles in the self-organization is, the lower the anisotropy of the specimens at the end of loading is. In addition, the number of particle contact increases with the increase of self-organized particles, while the normal contact force decreases. Furthermore, the probability distributions of coordination number and contact force are also closely related to the self-organization of fragmentation.
  • [1]
    孔宪京, 刘京茂, 邹德高, 等. 紫坪铺面板坝堆石料颗粒破碎试验研究[J]. 岩土力学, 2014, 35(1): 35-40.
    (KONG Xian-jing, LIU Jing-mao, ZOU De-gao, et al.Experimental study of particle breakage of Zipingpu rockfill material[J]. Rock and Soil Mechanics, 2014, 35(1): 35-40. (in Chinese))
    [2]
    蒋明镜, 孙渝刚. 考虑砂土颗粒破碎的圆孔扩张半解析分析[J]. 岩土工程学报, 2009, 31(11): 1645-1651.
    (JIANG Ming-jing, SUN Yu-gang.Semi-analytical solution to cavity expansion in crushable sands[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(11): 1645-1651. (in Chinese))
    [3]
    张季如, 祝杰, 黄文竞, 等. 侧限压缩下石英砂砾的颗粒破碎特性及其分形描述[J]. 岩土工程学报, 2008, 30(6): 783-789.
    (ZHANG Ji-ru, ZHU Jie, HUANG Wen-jing, et al.Crushing and fractal behaviors of quartz sand-gravel particles under confined compression[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(6): 783-789. (in Chinese))
    [4]
    SHENG D S, YAO Y Y, CARTER J P C P. A volume-stress model for sands under isotropic and critical stress st[J]. Canadian Geotechnical Journal, 2008, 45(11): 1639-1645.
    [5]
    YAO Y P, YAMAMOTO H, WANG N D.Constitutive model considering sand crushing[J]. Soils and Foundations, 2008, 48(2): 12-15.
    [6]
    张家铭, 邵晓泉, 王霄龙, 等. 沉桩过程中钙质砂颗粒破碎特性模拟研究[J]. 岩土力学, 2015, 36(1): 272-278.
    (ZHANG Jia-ming, SHAOXiao-quan, WANG Xiao-long, et al. Discrete element simulation of crushing behavior ofcalcareous sands during pile jacking[J]. Rock and Soil Mechanics, 2015, 36(1): 272-278. (in Chinese))
    [7]
    THORNTON C, CIOMOCOS M T, ADAMS M J.Numerical simulations of agglomerate impact breakage[J]. Powder Technology, 1999, 105(1-3): 74-82.
    [8]
    刘君, 刘福海, 孔宪京. 考虑破碎的堆石料颗粒流数值模拟[J]. 岩土力学, 2008, 29(增刊1): 111-116.
    (LIU Jun, LIU Fu-hai, KONG Xian-jing.Particle flow code numerical simulation of particle breakage of rockfill[J]. Rock and Soil Mechanics, 2008, 29(S1): 111-116. (in Chinese))
    [9]
    史旦达, 周健, 贾敏才, 等. 考虑颗粒破碎的砂土高应力一维压缩特性颗粒流模拟[J]. 岩土工程学报, 2007, 29(5): 736-742.
    (SHI Dan-da, ZHOU Jian, JIA Min-cai, et al.Numerical simulations of particle breakage property of sand under high pressure1D compression condition by use of particle flow code[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(5): 736-742. (in Chinese))
    [10]
    ZHOU W, YANG L, MA G, et al.Macro-micro responses of crushable granular materials in simulated true triaxial tests[J]. Granular Matter, 2015, 17(4): 497-509.
    [11]
    MCDOWELL G R, DE BONO J P. On the micro mechanics of one-dimensional normal compression[J]. Géotechnique, 2013, 63(11): 895-908.
    [12]
    DE BONO J P, MCDOWELL G R, Particle breakage criteria in discrete-element modelling[J]. Géotechnique, 2016, 66(12): 1014-1027.
    [13]
    BEN-NUN O, EINAV I.The role of self-organization during confined comminution of granular materials[J]. Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering Sciences, 2010, 368(1910): 231-247.
    [14]
    ELGHEZAL L, JAMEI M, GEORGOPOULOS I O.DEM simulations of stiff and soft materials with crushable particles: an application of expanded perlite as a soft granular material[J]. Granular Matter, 2013, 15(5): 685-704.
    [15]
    RUSSELL A R, WOOD D M.Point load tests and strength measurements for brittle spheres[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(2): 272-280.
    [16]
    张科芬, 张升, 滕继东, 等. 颗粒破碎的三维离散元研究[J]. 岩土力学, 待刊.
    (ZHANG Ke-fen, ZHANG Sheng, TENG Ji-dong, et al.A numerical study on particle breakage based on 3D discrete element method[J]. Rock and Soil Mechanics, in press.(in Chinese))
    [17]
    BORKOVEC M, DE PARIS W, PEIKERT R.The fractal dimension of the apollonian sphere packing[J]. Fractals, 1994, 2(4): 521-526.
    [18]
    TURCOTTE D L.Fractals and fragmentation[J]. Journal of Geophysical Research Solid Earth, 1986, 91(B2): 1921-1926.
    [19]
    EINAV I.Breakage mechanics—part I: theory[J]. Journal of the Mechanics & Physics of Solids, 2007, 55(6): 1274-1297.
    [20]
    MARSAL R J.Large-scale testing of rockfill materials[J]. Journal of the Soil Mechanics and Foundations Division, 1967, 93(2): 27-43.
    [21]
    LADE P V, YAMAMURO J A, BOPP P A.Significance of particle crushing in granular materials[J]. Journal of Geotechnical Engineering, 1996, 122(4): 309-316.
    [22]
    ZHANG S, TONG C X, LI X, et al.A new method for studying the evolution of particle breakage[J]. Géotechnique, 2015, 65(11): 911-922.
    [23]
    HARDIN B O.Crushing of soil particles[J]. Journal of Geotechnical Engineering, 1985, 111(10): 1177-1192.
    [24]
    THORNTON C.Numerical simulations of deviatoric shear deformation of granular media[J]. Géotechnique, 2000, 50(1): 43-53.
    [25]
    LIU C H, NAGEL S R, SCHECTER D A, et al.Force fluctuations in bead packs[J]. Science, 1995, 269(5223): 513-515.
  • Cited by

    Periodical cited type(2)

    1. 刘姝,李文杰,李莉佳,罗永江,陶瑞,李晓璇,杨亚会. 天然气水合物开采方法研究现状及展望. 钻探工程. 2024(05): 12-23 .
    2. 于倩男,唐慧敏,李承龙,梁爽,梁家修,陈志静,张琨. 天然气水合物注热分解渗流特征及数值模拟. 东北石油大学学报. 2023(06): 38-54+127-128 .

    Other cited types(0)

Catalog

    Article views (288) PDF downloads (247) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return