• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHENG Gang. Method and application of deformation control of excavations in soft ground[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 1-36. DOI: 10.11779/CJGE202201001
Citation: ZHENG Gang. Method and application of deformation control of excavations in soft ground[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 1-36. DOI: 10.11779/CJGE202201001

Method and application of deformation control of excavations in soft ground

More Information
  • Received Date: November 30, 2021
  • Available Online: September 22, 2022
  • The main task of excavations in soft ground is the deformation control, which is closely rated to their safety and environmental impact. With the increase of the buildings and structures in the urban areas, the construction-induced deformation has become the focus of the excavations. The characteristics, mechanism and environmental impact of the deformation caused by each excavation phase are analyzed in a view of the whole-process control. Furthermore, the control methods for the deformation and environmental impact of the excavations are classified into two types, i.e., the control based on the retaining system of the excavations and that based on the protected objects adjacent to them. For the latter type, the active control theory is proposed focusing on the deformation of the protected objects instead of the retaining system. This active targeting technology integrated with the measurement and control for the protected objects is realized by controlling the stress and deformation of the key zone. Finally, the strut-free retaining theory is proposed and a series of strut-free retaining technologies are developed for the excavations in soft ground. The design of strut-free retaining for the excavations with relatively large depth can be realized using these technologies. The theories and applications of the whole-process control, the active control and the strut-free retaining system promote the deformation control of the excavations towards the efficient, intelligent, green and low-carbon aim.
  • [1]
    郑刚, 朱合华, 刘新荣, 等. 基坑工程与地下工程安全及环境影响控制[J]. 土木工程学报, 2016, 49(6): 1–24. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201606001.htm

    ZHENG Gang, ZHU He-hua, LIU Xin-rong, et al. Control of safety of deep excavations and underground engineering and its impact on surrounding environment[J]. China Civil Engineering Journal, 2016, 49(6): 1–24. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201606001.htm
    [2]
    郑刚, 曾超峰. 基坑开挖前潜水降水引起的地下连续墙侧移研究[J]. 岩土工程学报, 2013, 35(12): 2153–2163. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201312002.htm

    ZHENG Gang, ZENG Chao-feng. Lateral displacement of diaphragm wall by dewatering of phreatic water before excavation[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12): 2153–2163. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201312002.htm
    [3]
    曾超峰, 郑刚, 薛秀丽. 大面积基坑开挖前预降水对支护墙变形的影响研究[J]. 岩土工程学报, 2017, 39(6): 1012–1021. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201706008.htm

    ZENG Chao-feng, ZHENG Gang, XUE Xiu-li. Wall deflection induced by pre-excavation dewatering in large-scale excavations[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1012–1021. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201706008.htm
    [4]
    曾超峰, 薛秀丽, 郑刚. 软土区基坑预降水引起支护墙侧移的典型参数影响研究[J]. 岩土力学, 2017, 38(11): 3295–3303, 3318. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201711028.htm

    ZENG Chao-feng, XUE Xiu-li, ZHENG Gang. A parametric study of lateral displacement of support wall induced by foundation pre-dewatering in soft ground[J]. Rock and Soil Mechanics, 2017, 38(11): 3295–3303, 3318. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201711028.htm
    [5]
    ZENG C F, ZHENG G, ZHOU X F, et al. Behaviours of wall and soil during pre-excavation dewatering under different foundation pit widths[J]. Computers and Geotechnics, 2019, 115: 103169. doi: 10.1016/j.compgeo.2019.103169
    [6]
    ZHENG G, CAO J R, CHENG X S, et al. Experimental study on the artificial recharge of semiconfined aquifers involved in deep excavation engineering[J]. Journal of Hydrology, 2018, 557: 868–877. doi: 10.1016/j.jhydrol.2018.01.020
    [7]
    ZENG C F, XUE X L, ZHENG G, et al. Responses of retaining wall and surrounding ground to pre-excavation dewatering in an alternated multi-aquifer-aquitard system[J]. Journal of Hydrology, 2018, 559: 609–626. doi: 10.1016/j.jhydrol.2018.02.069
    [8]
    郑刚, 曾超峰, 薛秀丽. 承压含水层局部降压引起土体沉降机理及参数分析[J]. 岩土工程学报, 2014, 36(5): 802–817. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201405003.htm

    ZHENG Gang, ZENG Chao-feng, XUE Xiu-li. Settlement mechanism of soils induced by local pressure-relief of confined aquifer and parameter analysis[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 802–817. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201405003.htm
    [9]
    ZENG C F, ZHENG G, XUE X L, et al. Combined recharge: a method to prevent ground settlement induced by redevelopment of recharge wells[J]. Journal of Hydrology, 2019, 568: 1–11. doi: 10.1016/j.jhydrol.2018.10.051
    [10]
    曹剑然. 天津地区基坑工程中承压层回灌控沉理论与技术研究[D]. 天津: 天津大学, 2018.

    CAO Jian-ran. Study on the Theory and Technology of Recharge and Subsidence Control of Confined Layer in Excavation Engineering in Tianjin Area[D]. Tianjin: Tianjin University, 2018. (in Chinese)
    [11]
    郑刚, 曹剑然, 程雪松, 等. 天津第二粉土粉砂微承压含水层回灌试验研究[J]. 岩土工程学报, 2018, 40(4): 592–601. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201804004.htm

    ZHENG Gang, CAO Jian-ran, CHENG Xue-song, et al. Experimental study on artificial recharge of second Tianjin silt and silty sand micro-confined aquifer[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 592–601. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201804004.htm
    [12]
    哈达, 朱敢平, 李竹, 等. 天津市承压含水层条件下地下连续墙深度优化[J]. 地下空间与工程学报, 2018, 14(2): 490–499. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201802027.htm

    HA Da, ZHU Gan-ping, LI Zhu, et al. Underground diaphragm wall depth optimization considering the confined aquifer in Tianjin[J]. Chinese Journal of Underground Space and Engineering, 2018, 14(2): 490–499. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201802027.htm
    [13]
    孙宏宾, 郑刚, 程雪松, 等. 软土地区CFG桩群孔效应引发周边土体变形机理研究[J]. 石家庄铁道大学学报(自然科学版), 2018, 31(1): 39–46, 54. https://www.cnki.com.cn/Article/CJFDTOTAL-SJZT201801008.htm

    SUN Hong-bin, ZHENG Gang, CHENG Xue-song, et al. Study on the mechanism of soil deformation caused by the borehole group effect of CFG piles in soft soil area[J]. Journal of Shijiazhuang Tiedao University (Natural Science Edition), 2018, 31(1): 39–46, 54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJZT201801008.htm
    [14]
    郑刚, 王若展, 程雪松, 等. 软土地区桩基施工群孔效应作用机理研究[J]. 天津大学学报(自然科学与工程技术版), 2019, 52(增刊1): 1–8.

    ZHENG Gang, WANG Ruo-zhan, CHENG Xue-song, et al. Mechanism of borehole group effect induced by pile foundation construction in soft soils[J]. Journal of Tianjin University (Science and Technology), 2019, 52(S1): 1–8. (in Chinese)
    [15]
    郑刚, 李溪源, 王若展, 等. 群孔效应对周边环境影响的控制措施研究[J]. 石家庄铁道大学学报(自然科学版), 2020, 33(2): 8–15. https://www.cnki.com.cn/Article/CJFDTOTAL-SJZT202002003.htm

    ZHENG Gang, LI Xi-yuan, WANG Ruo-zhan, et al. Research on control measures of influence of borehole group on surrounding environment[J]. Journal of Shijiazhuang Tiedao University (Natural Science Edition), 2020, 33(2): 8–15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJZT202002003.htm
    [16]
    李姝婷. 地下连续墙施工引起的土体变形实测与数值分析研究[D]. 天津: 天津大学, 2014.

    LI Shu-ting. Field Monitoring and Numerical Analysis of Ground Movements due to Diaphragm Wall Installation[D]. Tianjin: Tianjin University, 2014. (in Chinese)
    [17]
    郑刚, 邓旭, 刘畅, 等. 不同维护结构变形模式对坑外深层土体位移场影响的对比分析[J]. 岩土工程学报, 2014, 36(2): 273–285. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201402003.htm

    ZHENG Gang, DENG Xu, LIU Chang, et al. Comparative analysis of influences of different deformation modes of retaining structures on displacement field of deep soils outside excavations[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 273–285. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201402003.htm
    [18]
    龚晓南. 深基坑工程设计施工手册[M]. 北京: 中国建筑工业出版社, 1998.

    GONG Xiao-nan. Construction Design Manual of Deep Excavation[M]. Beijing: China Architecture & Building Press, 1998. (in Chinese)
    [19]
    郑刚, 李志伟. 不同围护结构变形形式的基坑开挖对邻近建筑物的影响对比分析[J]. 岩土工程学报, 2012, 34(6): 969–977. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201206003.htm

    ZHENG Gang, LI Zhi-wei. Comparative analysis of responses of buildings adjacent to excavations with different deformation modes of retaining walls[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(6): 969–977. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201206003.htm
    [20]
    郑刚, 李志伟. 基坑开挖对邻近不同楼层建筑物影响的有限元分析[J]. 天津大学学报, 2012, 45(9): 829–837. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX201209015.htm

    ZHENG Gang, LI Zhi-wei. Finite element analysis of response of building with different storeys adjacent to pit excavation[J]. Journal of Tianjin University, 2012, 45(9): 829–837. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX201209015.htm
    [21]
    郑刚, 王琦, 邓旭, 等. 不同围护结构变形模式对坑外既有隧道变形影响的对比分析[J]. 岩土工程学报, 2015, 37(7): 1181–1194. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201507004.htm

    ZHENG Gang, WANG Qi, DENG Xu, et al. Comparative analysis of influences of different deformation modes of retaining structures on deformation of existing tunnels outside excavations[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(7): 1181–1194. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201507004.htm
    [22]
    郑刚, 李志伟. 基坑开挖对邻近任意角度建筑物影响的有限元分析[J]. 岩土工程学报, 2012, 34(4): 615–624. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201204008.htm

    ZHENG Gang, LI Zhi-wei. Finite element analysis of response of buildings with arbitrary angle adjacent to excavations[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 615–624. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201204008.htm
    [23]
    城市轨道交通结构安全保护技术规范: GJJ/T 202—2013[S]. 北京: 中国建筑工业出版社, 2013.

    Technical Specification for Structural Safety Protection of Urban Rail Transit: GJJ/T 202—2013[S]. China Architecture & Building Press, 2013. (in Chinese)
    [24]
    ZHENG G, TONG J B, ZHANG T Q, et al. Progression of backward erosion piping with sudden and gradual hydraulic loads[J]. Acta Geotechnica, 2021: 1–7.
    [25]
    VAN BEEK V M, BEZUIJEN A, SELLMEIJER J B, et al. Initiation of backward erosion piping in uniform sands[J]. Géotechnique, 2014, 64(12): 927–941. doi: 10.1680/geot.13.P.210
    [26]
    VAN BEEK V M, VAN ESSEN H M, VANDENBOER K, et al. Developments in modelling of backward erosion piping[J]. Géotechnique, 2015, 65(9): 740–754. doi: 10.1680/geot.14.P.119
    [27]
    VANDENBOER K, VAN BEEK V M, BEZUIJEN A. 3D character of backward erosion piping[J]. Géotechnique, 2018, 68(1): 86–90. doi: 10.1680/jgeot.16.P.091
    [28]
    郑刚, 程雪松. 长短桩组合排桩悬臂支护工作机理试验研究[J]. 岩土工程学报, 2008, 30(增刊1): 410–415. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2008S1089.htm

    ZHENG Gang, CHENG Xue-song. Experimental study on cantilever contiguous retaining piles with different lengths[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(S1): 410–415. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2008S1089.htm
    [29]
    李竹, 郑刚, 王海旭. 带水平支撑长短桩组合排桩工作性状模型试验研究[J]. 岩土工程学报, 2010, 32(增刊1): 440–446. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2010S1087.htm

    LI Zhu, ZHENG Gang, WANG Hai-xu. Model tests on work behaviors of retaining piles with different lengths and horizontal support[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(S1): 440–446. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2010S1087.htm
    [30]
    CHEN R P, MENG F Y, LI Z C, et al. Investigation of response of metro tunnels due to adjacent large excavation and protective measures in soft soils[J]. Tunnelling and Underground Space Technology, 2016, 58: 224–235. doi: 10.1016/j.tust.2016.06.002
    [31]
    王卫东, 沈健, 翁其平, 等. 基坑工程对邻近地铁隧道影响的分析与对策[J]. 岩土工程学报, 2006, 28(增刊1): 1340–1345. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2006S1006.htm

    WANG Wei-dong, SHEN Jian, WENG Qi-ping, et al. Analysis and countermeasures of influence of excavation on adjacent tunnels[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(S1): 1340–1345. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2006S1006.htm
    [32]
    郑刚, 潘军, 程雪松, 等. 基坑开挖引起隧道水平变形的被动与注浆主动控制研究[J]. 岩土工程学报, 2019, 41(7): 1181–1190. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201907002.htm

    ZHENG Gang, PAN Jun, CHENG Xue-song, et al. Passive control and active grouting control of horizontal deformation of tunnels induced neighboring excavation[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1181–1190. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201907002.htm
    [33]
    ZHENG G, PAN J, CHENG X S, et al. Use of grouting to control horizontal tunnel deformation induced by adjacent excavation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(7): 05020004. doi: 10.1061/(ASCE)GT.1943-5606.0002276
    [34]
    秦宏亮. 钢支撑轴力伺服系统技术在基坑开挖中的应用[J]. 建筑施工, 2019, 41(7): 1195–1198. https://www.cnki.com.cn/Article/CJFDTOTAL-JZSG201907005.htm

    QIN Hong-liang. Application of steel support axis force servo system technology to foundation pit excavation[J]. Building Construction, 2019, 41(7): 1195–1198. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZSG201907005.htm
    [35]
    DIAO Y, BI C, DU Y M, et al. Greenfield test and numerical study on grouting in silty clay to control horizontal displacement of underground facilities[J]. International Journal of Geomechanics, 2021, 21(10): 04021178. doi: 10.1061/(ASCE)GM.1943-5622.0002140
    [36]
    刁钰, 李光帅, 郑刚. 一种控制土体变形的单点囊式注浆装置: CN208235526U[P]. 2018-12-14.

    DIAO Yu, LI Guang-shuai, ZHENG Gang. Single-Point Capsule Grouting Device to Control Soil Deformation: CN208235526U[P]. 2018-12-14. (in Chinese)
    [37]
    刁钰, 杨超, 郑刚. 一种控制土体变形的多点囊式注浆装置及其方法: CN208235526U[P]. 2018-12-14.

    DIAO Yu, Yang Chao, ZHENG Gang. Multiple-Point Capsule Grouting Device to Control Soil Deformation Device: CN208235524U[P]. 2018-12-14. (in Chinese)
    [38]
    ZHENG G, SU Y M, DIAO Y, et al. Field measurements and analysis of real-time capsule grouting to protect existing tunnel adjacent to excavation[J]. Tunnelling and Underground Space Technology, 2021, 122: 104350.
    [39]
    ZHENG G, HUANG J Y, DIAO Y, et al. Formulation and performance of slow-setting cement-based grouting paste (SCGP) for capsule grouting technology using orthogonal test[J]. Construction and Building Materials, 2021, 302: 124204. doi: 10.1016/j.conbuildmat.2021.124204
    [40]
    曾超峰, 薛秀丽, 郑刚. 基坑工程长期地下水回灌控沉应注意的几个问题[J]. 土木工程学报, 2019, 52(增刊2): 127–131. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2019S2018.htm

    ZENG Chao-feng, XUE Xiu-li, ZHENG Gang. Problems needed to be noticed for artificial recharge in deep excavation for settlement control[J]. China Civil Engineering Journal, 2019, 52(S2): 127–131. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2019S2018.htm
    [41]
    郑刚, 哈达, 程雪松, 等. 回灌开启时间对地层沉降与应力应变的影响[J]. 天津大学学报(自然科学与工程技术版), 2020, 53(2): 180–191. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX202002009.htm

    ZHENG Gang, HA Da, CHENG Xue-song, et al. Impact of recharge wells' opening time on the subsidence, stress, and strain of soil[J]. Journal of Tianjin University (Science and Technology), 2020, 53(2): 180–191. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX202002009.htm
    [42]
    HA D, ZHENG G, ZHOU H Z, et al. Estimation of hydraulic parameters from pumping tests in a multiaquifer system[J]. Underground Space, 2020, 5(3): 210–222. doi: 10.1016/j.undsp.2019.03.006
    [43]
    郑刚, 曾超峰, 刘畅, 等. 天津首例基坑工程承压含水层回灌实测研究[J]. 岩土工程学报, 2013, 35(增刊2): 491–495. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2084.htm

    ZHENG Gang, ZENG Chao-feng, LIU Chang, et al. Field observation of artificial recharge of confined water in first excavation case in Tianjin[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 491–495. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2084.htm
    [44]
    郑刚, 曹剑然, 程雪松, 等. 考虑承压含水层间越流的地下水回灌现场试验研究[J]. 岩土工程学报, 2019, 41(9): 1609–1618. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201909005.htm

    ZHENG Gang, CAO Jian-ran, CHENG Xue-song, et al. Field tests on groundwater recharge considering leakage between semiconfined aquifers[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1609–1618. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201909005.htm
    [45]
    岳清瑞. 钢结构与可持续发展[J]. 建筑, 2021(13): 20–21, 23. https://www.cnki.com.cn/Article/CJFDTOTAL-JANZ202113007.htm

    YUE Qing-rui. Steel structure and sustainable development[J]. Construction and Architecture, 2021(13): 20–21, 23. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JANZ202113007.htm
    [46]
    郑刚, 陈红庆, 雷扬, 等. 基坑开挖反压土作用机制及其简化分析方法研究[J]. 岩土力学, 2007, 28(6): 1161–1166. doi: 10.3969/j.issn.1000-7598.2007.06.018

    ZHENG Gang, CHEN Hong-qing, LEI Yang, et al. A study of mechanism of earth berm and simplified analysis method for excavation[J]. Rock and Soil Mechanics, 2007, 28(6): 1161–1166. (in Chinese) doi: 10.3969/j.issn.1000-7598.2007.06.018
    [47]
    李顺群, 郑刚, 王英红. 反压土对悬臂式支护结构嵌固深度的影响研究[J]. 岩土力学, 2011, 32(11): 3427–3431, 3436. doi: 10.3969/j.issn.1000-7598.2011.11.037

    LI Shun-qun, ZHENG Gang, WANG Ying-hong. Influence of earth berm on embedment depth of cantilever retaining structure for pit excavation[J]. Rock and Soil Mechanics, 2011, 32(11): 3427–3431, 3436. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.11.037
    [48]
    郑刚, 李欣, 刘畅, 等. 考虑桩土相互作用的双排桩分析[J]. 建筑结构学报, 2004, 25(1): 99–106. doi: 10.3321/j.issn:1000-6869.2004.01.014

    ZHENG Gang, LI Xin, LIU Chang, et al. Analysis of double-row piles in consideration of the pile-soil interaction[J]. Journal of Building Structures, 2004, 25(1): 99–106. (in Chinese) doi: 10.3321/j.issn:1000-6869.2004.01.014
    [49]
    郑刚, 郭一斌, 聂东清, 等. 大面积基坑多级支护理论与工程应用实践[J]. 岩土力学, 2014, 35(增刊2): 290–298. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2014S2041.htm

    ZHENG Gang, GUO Yi-bin, NIE Dong-qing, et al. Theory of multi-bench retaining for large area foundation pit and its engineering application[J]. Rock and Soil Mechanics, 2014, 35(S2): 290–298. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2014S2041.htm
    [50]
    ZHOU H Z, ZHENG G, HE X P, et al. Numerical modelling of retaining structure displacements in multi-bench retained excavations[J]. Acta Geotechnica, 2020, 15(9): 2691–2703. doi: 10.1007/s11440-020-00947-3
    [51]
    郑刚, 程雪松, 刁钰. 无支撑多级支护结构稳定性与破坏机理分析[J]. 天津大学学报, 2013, 46(4): 304–314. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX201304005.htm

    ZHENG Gang, CHENG Xue-song, DIAO Yu. Analysis of the stability and collapse mechanism of non-prop and multi-stage retaining structure[J]. Journal of Tianjin University, 2013, 46(4): 304–314. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX201304005.htm
    [52]
    任望东, 张同兴, 张大明, 等. 深基坑多级支护破坏模式及稳定性参数分析[J]. 岩土工程学报, 2013, 35(增刊2): 919–922. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2173.htm

    REN Wang-dong, ZHANG Tong-xing, ZHANG Da-ming, et al. Parametric analysis of failure modes and stability of muti-level retaining structure in deep excavations[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 919–922. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2173.htm
    [53]
    郑刚, 聂东清, 刁钰, 等. 基坑多级支护破坏模式研究[J]. 岩土力学, 2017, 38(增刊1): 313–322. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S1047.htm

    ZHENG Gang, NIE Dong-qing, DIAO Yu, et al. Failure mechanism of multi-bench retained foundation pit[J]. Rock and Soil Mechanics, 2017, 38(S1): 313–322. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S1047.htm
    [54]
    郑刚, 聂东清, 程雪松, 等. 基坑分级支护的模型试验研究[J]. 岩土工程学报, 2017, 39(5): 784–794. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201705003.htm

    ZHENG Gang, NIE Dong-qing, CHENG Xue-song, et al. Experimental study on multi-bench retaining foundation pit[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 784–794. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201705003.htm
    [55]
    刘杰, 郑刚, 聂东清. 天津软土地区深基坑多级支护结构变形的参数分析[J]. 石家庄铁道大学学报(自然科学版), 2018, 31(1): 47–54. https://www.cnki.com.cn/Article/CJFDTOTAL-SJZT201801009.htm

    LIU Jie, ZHENG Gang, NIE Dong-qing. Parametric analysis on deformation of multi-bench retaining system of deep foundation pit in Tianjin soft ground area[J]. Journal of Shijiazhuang Tiedao University (Natural Science Edition), 2018, 31(1): 47–54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJZT201801009.htm
    [56]
    郑刚, 白若虚. 倾斜单排桩在水平荷载作用下的性状研究[J]. 岩土工程学报, 2010, 32(增刊1): 39–45. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2010S1009.htm

    ZHENG Gang, BAI Ruo-xu. Behaviors study of inclined single row contiguous retaining piles under horizontal force[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(S1): 39–45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2010S1009.htm
    [57]
    DIAO Y, ZHU P Y, JIA Z Y, et al. Stability analysis and safety factor prediction of excavation supported by inclined piles in clay[J]. Computers and Geotechnics, 2021, 140: 104420. doi: 10.1016/j.compgeo.2021.104420
    [58]
    周海祚, 郑刚, 何晓佩, 等. 基坑倾斜桩支护稳定特性及分析方法研究[J/OL]. 岩土工程学报: 1-8. [2021-12-02]. http://kns.cnki.net/kcms/detail/32.1124.tu.20210809.1654.004.html.

    ZHOU Hai-zuo, ZHENG Gang, HE Xiao-pei, et al. Study on stability characteristics and analysis method of inclined retaining walls in excavations[J]. Chinese Journal of Geotechnical Engineering, 2021, 1-8. [2021-12-02]. http://kns.cnki.net/kcms/detail/32.1124.tu.20210809.1654.004.html. (in Chinese)
    [59]
    郑刚, 王玉萍, 程雪松, 等. 基坑倾斜桩支护性能及机理大型模型试验研究[J]. 岩土工程学报, 2021, 43(9): 1581–1591. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202109003.htm

    ZHENG Gang, WANG Yu-ping, CHENG Xue-song, et al. Large-scale model tests on performance and mechanism of inclined retaining structures of excavations[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1581–1591. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202109003.htm
    [60]
    郑刚, 何晓佩, 周海祚, 等. 基坑斜-直交替支护桩工作机理分析[J]. 岩土工程学报, 2019, 41(增刊1): 97–100. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S1026.htm

    ZHENG Gang, HE Xiao-pei, ZHOU Hai-zuo, et al. Working mechanism of inclined-vertical retaining piles in excavations[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 97–100. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S1026.htm
    [61]
    郑刚, 吴小波, 周海祚, 等. 基坑倾斜桩无支撑支护机理与工程应用[J]. 施工技术, 2021, 50(13): 157–162, 178.

    ZHENG Gang, WU Xiao-bo, ZHOU Hai-zuo, et al. Supporting method and applications of incline retaining piles in foundation excavation[J]. Construction Technology, 2021, 50(13): 157–162, 178. (in Chinese)
  • Related Articles

    [1]GUO Wanli, CAI Zhengyin, ZHU Jungao. Three state variables-related constitutive model for coarse-grained soil[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 234-242. DOI: 10.11779/CJGE20230372
    [2]JIN Le-wen, WANG Chen, LIANG Fa-yun. Status and engineering problems of utilization of deep underground space in urban coastal soft soil areas[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 178-183. DOI: 10.11779/CJGE2021S2043
    [3]HUANG Wan-peng, SUN Yuan-xiang, CHEN Shao-jie. Theory of creep disturbance effect of rock and its application in support of deep dynamic engineering[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1621-1630. DOI: 10.11779/CJGE202109006
    [4]LU De-chun, LI Xiao-qiang, LIANG Jing-yu, DU Xiu-li. 3D elastoplastic constitutive model for normally consolidated soils based on characteristic stress[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 50-59. DOI: 10.11779/CJGE201901005
    [5]WANG Lei, ZHU Bin, LI Jun-chao, CHEN Yun-min. Two-phase constitutive model for fiber-reinforced soil[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1326-1333. DOI: 10.11779/CJGE201407017
    [6]MA Tian-tian, WEI Chang-fu, YAN Rong-tao, WEI Hou-zhen, TIAN Hui-hui. SMP-based representation of a constitutive model for unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 295-300. DOI: 10.11779/CJGE201402004
    [7]XUE Li-ying, YANG Wen-sheng, LI Rong-nian. Discussion and analysis of accident reasons of deep foundation pits[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 468-473.
    [8]JIANG Ming-jing, XIAO Yu, ZHU Fang-yuan. Numerical simulation of macro-mechanical properties of deep-sea methane hydrate bearing soils by DEM[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 157-163.
    [9]LIU Han-long, XIAO Yang, CUI Yun-liang. Elasto-plastic damage constitutive model in three-dimensional stress space for structured soft soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 637.
    [10]ZHAO Xihong, LI Bei, LI Kan, YANG Guoxiang. Study on theory and practice for specially big and deep excavation engineering——Deep excavation engineering in Puxi,Outer Ring Tunnel Project of Shanghai[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(3): 258-263.
  • Cited by

    Periodical cited type(120)

    1. 白松松,周宗青,高成路,孟庆余,刘建勋,高天,王旭,柯成林. 钻爆法海底隧道穿越断层破碎带围岩稳定性综合分析与控制方法研究. 岩石力学与工程学报. 2025(03): 691-704 .
    2. 代倩,廖红建,康孝森,孙玉军,周恒. 循环加载下压实黄土的边界面塑性本构模型. 西北大学学报(自然科学版). 2024(01): 26-32 .
    3. 杜炜,聂如松,谭永长,张杰,祁延录,赵春彦. 格栅节点加强对风积沙筋土界面力学性能的影响. 中南大学学报(自然科学版). 2024(01): 172-187 .
    4. 张杰,聂如松,李列列,李亚峰,杜炜,黄茂桐. 基于柔性边界的非饱和土三轴试验及离散元分析. 应用基础与工程科学学报. 2024(01): 208-222 .
    5. 刘昂,张尔康,林文丽. 三轴剪切条件下水泥胶结砂声发射特征信息演化规律研究. 中南大学学报(自然科学版). 2024(02): 618-627 .
    6. 陈轩翌,许领,魏欣,董立. 太原湿陷性黄土微观结构沿剖面变化特征研究. 工程地质学报. 2024(01): 8-18 .
    7. 董侨 ,杜豫川 ,郭猛 ,黄优 ,贾彦顺 ,蒋玮 ,金娇 ,李峰 ,刘成龙 ,刘鹏飞 ,刘状壮 ,罗雪 ,吕松涛 ,马涛 ,沙爱民 ,单丽岩 ,司春棣 ,王朝辉 ,王大为 ,肖月 ,徐慧宁 ,杨旭 ,张久鹏 ,张园 ,朱兴一. 中国路面工程学术研究综述·2024. 中国公路学报. 2024(03): 1-81 .
    8. 王思远,蒋明镜. 基于嫦娥五号月壤粒形特征的离散元模拟方法. 岩土工程学报. 2024(04): 833-842 . 本站查看
    9. 郝俊峰,冯飞鸿,王涛,谷孟辉. pH值对湿陷性黄土物理力学性能及微观结构的影响. 岩土工程技术. 2024(02): 233-237 .
    10. 张杰,聂如松,李列列,黄茂桐,谭永长. 道砟嵌入路基土试样离散元虚拟三轴试验. 交通运输工程学报. 2024(02): 137-151 .
    11. 葛苗苗,何璇,谷川,李宁,刘乃飞. 压缩及增减湿作用下非饱和黄土细观结构演化规律研究. 工程地质学报. 2024(02): 397-409 .
    12. 刘瑾,车文越,郝社锋,马晓凡,喻永祥,王颖,陈志昊,李婉婉,钱卫. 基于CT技术的黄原胶加固土干湿循环条件下力学性能和微观结构劣化机制研究. 岩土工程学报. 2024(05): 1119-1126 . 本站查看
    13. 杨盼,刘创奕,鹿庆蕊,陈士军. 纤维地聚物改性粉质黏土无侧限抗压强度试验研究. 科学技术与工程. 2024(13): 5491-5499 .
    14. 王思远,蒋明镜,石安宁. 三轴剪切下砂土应变局部化宏微观特性演化规律离散元分析. 岩石力学与工程学报. 2024(S1): 3586-3596 .
    15. 王涛,姬建. 砂土边坡桩间水平土拱机理与演变规律离散元分析. 岩土工程学报. 2024(08): 1742-1752 . 本站查看
    16. 张旭东,王永志,王体强,段雪锋,袁晓铭. 宽级配土离心试验地基模型落雨法分层机制与数值模拟. 岩土工程学报. 2024(S1): 122-126 . 本站查看
    17. 张曦,骆建文,潘俊义,刘斌,杨楠. 陕西榆林毛乌素沙漠南缘风积沙的湿陷规律及其影响因素. 中国地质灾害与防治学报. 2024(04): 75-84 .
    18. 张旭东,王永志,王体强,刘红帅,段雪锋,袁晓铭. 宽级配珊瑚土落雨制模分层现象与控制方法. 自然灾害学报. 2024(04): 188-197 .
    19. 俞骏晖. 土工格室加筋沥青混凝土单轴压缩过程细观特性研究. 交通科技. 2024(04): 56-63 .
    20. 郭静,赵振华,马梦媛,史长远,姚占勇,赵秋红,姚凯. 基于MatDEM的松散地基喷浆加固浆液扩散规律. 山东大学学报(工学版). 2024(04): 106-114+121 .
    21. 吴峰,黄林冲,赖正首. 基于球面沃罗诺伊的颗粒表面离散与重构方法. 工程力学. 2024(09): 245-256 .
    22. 陈宝,柳超凡,邓荣升,周一鸣. 非饱和黄土侧限压缩和湿陷试验的宏微观离散元特性分析. 工程科学与技术. 2024(05): 212-220 .
    23. 童立红,傅力,徐长节. 颗粒旋转对颗粒材料系统抗剪强度影响研究. 工程力学. 2024(11): 125-133 .
    24. 张琪,李祥春,LI Biao,聂百胜,张良,刘艺,周昌勇,杨刚. 单轴压缩条件下煤体宏-微观损伤破坏特征研究. 采矿与安全工程学报. 2024(06): 1241-1253 .
    25. 马莉,叶尔哈力·胡斯曼,刘学军,石开欣,胡扬阳. 大温差环境下新疆伊犁黄土变形特性. 应用基础与工程科学学报. 2024(06): 1630-1647 .
    26. 蒋明镜,张卢丰,韩亮,姜朋明. 基于符号回归算法的结构性砂土损伤规律研究. 岩土力学. 2024(12): 3768-3778 .
    27. 黄志刚,王轩,傅力,童立红. 加载速率和摩擦系数对颗粒材料系统剪切强度的影响研究. 力学季刊. 2024(04): 1032-1042 .
    28. 洪秋阳,来弘鹏,刘禹阳. Q_2黄土微观结构特征三维数字化方法实现. 地下空间与工程学报. 2024(06): 1806-1817+1866 .
    29. 李鑫,陈汉青,苏栋,陈湘生,沈翔. 干湿循环对岩溶地区细角砾土力学性能和微观特征的影响(英文). Journal of Zhejiang University-Science A(Applied Physics & Engineering). 2024(12): 974-991 .
    30. 杨启志,赫明胜,施雷,朱梦岚,李章彦,何文兵. 分层防寒土与接触式清土机具相互作用的离散元仿真参数标定. 江苏大学学报(自然科学版). 2023(01): 52-61 .
    31. 陈志敏,刘耀辉,郭利民,李宁,王壹敏. 松散岩堆细-宏观强度关系与围岩压力. 湖南大学学报(自然科学版). 2023(01): 189-197 .
    32. 奚邦禄,蒋明镜,张振华,刘笑显. 高内摩擦角土体承载力特性形状效应分析. 水利与建筑工程学报. 2023(01): 117-123 .
    33. 陈贺,鲁志强,李果,陈争玉. 滇西北高原山区不同降雨条件下斜坡深部响应的试验研究. 中外公路. 2023(01): 11-18 .
    34. 薛金昊,胡建林,郭江峰,郑瑞海,赵天亮. 冀北地区原状土与重塑土的抗剪强度对比研究. 宁夏工程技术. 2023(01): 44-48+55 .
    35. 刘伟明,张华涛,常锦,胡林杰,向家骏. 大气干湿循环作用下高液限土微观结构研究. 长沙大学学报. 2023(02): 42-47+53 .
    36. 单浩,张思卿,赵晔,曹永刚,徐寿政,刘鑫. 基于独立分量分析的黏土欧拉数与物理力学指标关系研究. 三峡大学学报(自然科学版). 2023(03): 50-55 .
    37. 秦鹏飞,钟宏伟,刘坚. STUDY ON MESO-MECHANICAL SIMULATION OF GROUTING FOR UNFAVORABLE GEOLOGICAL CONDITIONS. 工程力学. 2023(S1): 248-258 .
    38. 郭剑,崔一飞. 滑坡-泥石流转化研究进展. 工程地质学报. 2023(03): 762-779 .
    39. 刘芸松,王嗣强,季顺迎. 基于水平集-离散元方法的球谐函数颗粒材料缓冲性能分析. 计算力学学报. 2023(04): 538-545 .
    40. 单熠博,陈生水,钟启明,王琳,杨蒙,卢洪宁,陈小康. 压实黄土淤地坝“陡坎”冲蚀特性研究. 岩石力学与工程学报. 2023(09): 2315-2328 .
    41. 刘嘉英,许智超,魏纲,胡成宝,孙苗苗,王雨婷. 加卸载状态下散粒体力链结构的复杂网络分析. 岩土力学. 2023(09): 2767-2778 .
    42. 奚邦禄,蒋明镜,莫品强,张振华,郭杨. 不同重力场下月基承载特性离散元数值分析. 中南大学学报(自然科学版). 2023(08): 3226-3236 .
    43. 牛庚,郭晓霞,陈凡秀,孔亮,卢有谦,李凯. 水-力作用下黏土孔隙结构演化规律研究进展. 防灾减灾工程学报. 2023(04): 905-916 .
    44. 葛晨雨,宿利平,王林,徐硕,刘洋. 基于离散元的浅埋偏压隧道施工细观机理研究. 土木工程与管理学报. 2023(04): 107-114 .
    45. 边晓亚,赵哲坤,武林,陈旭勇. 宏微观试验融入土力学课程教学的探索. 科教文汇. 2023(06): 83-86 .
    46. 张杰,聂如松,黄茂桐,谭永长,肖玲. 基于柔性边界的非饱和接触模型参数标定方法. 工程科学与技术. 2023(06): 132-141 .
    47. 李栋,彭松,常丹,刘建坤,南霁云,汪旭,曹雄. 基于压汞试验的珠海软土微观孔隙特征分析. 岩石力学与工程学报. 2023(S2): 4289-4298 .
    48. 陈永,黄英豪,王硕,蔡正银,穆彦虎. 冻融循环对不同压实度下膨胀土力学特性影响的试验研究. 岩石力学与工程学报. 2023(S2): 4299-4309 .
    49. 邵龙潭,吴雪晴,田筱剑,郭晓霞,陈之祥. 基于图像测量三轴试验的土的本构模型构建方法. 土木工程学报. 2023(S2): 11-19 .
    50. 栾纪元,王冀鹏. 基于4D显微成像的非饱和颗粒土微观力学与渗流试验研究. 岩土力学. 2023(11): 3252-3260 .
    51. 王思远,蒋明镜,李承超,张旭东. 三轴剪切条件下胶结型深海能源土应变局部化离散元模拟分析. 岩土力学. 2023(11): 3307-3317+3338 .
    52. 高雪,高燕,孙可天,史天根. 剪切过程中钙质砂的颗粒破碎与能量演化. 中山大学学报(自然科学版)(中英文). 2023(06): 11-21 .
    53. 赵奕博,田水承,黄剑,张铎. 宁夏灵新矿不粘煤的孔隙结构特征及其对CO吸附的影响. 西安科技大学学报. 2023(06): 1071-1078 .
    54. 王怡舒,刘斯宏,沈超敏,陈静涛. 接触摩擦对颗粒材料宏细观力学特征和能量演变规律的影响. 岩石力学与工程学报. 2022(02): 412-422 .
    55. 张岩,樊亮,王林,侯佳林,谷传庆. 黏粒含量对粉土抗压强度的影响. 路基工程. 2022(01): 44-48 .
    56. 袁志辉,唐春,杨普济,甘建军. 干湿循环下红土力学性质劣化的多尺度试验. 水力发电学报. 2022(02): 79-91 .
    57. 张嘉凡,徐荣平,刘洋,张慧梅. 冻融循环作用下注浆裂隙岩体微观孔隙演化规律及剪切力学行为研究. 岩石力学与工程学报. 2022(04): 676-690 .
    58. 刘云贺,王琦,宁致远,孟霄,董静,杨迪雄. 考虑损伤的平行黏结接触模型开发及其参数影响分析. 岩土力学. 2022(03): 615-624 .
    59. 余沛. 三相草图在土的关键物理性质指标计算中的应用分析. 三门峡职业技术学院学报. 2022(01): 145-148 .
    60. 杨磊,涂冬媚,朱启银,吴则祥,余闯. 考虑变温幅值影响的颗粒循环热固结离散元法试验研究. 岩土力学. 2022(S1): 591-600 .
    61. 申志福,张栩银,高峰,王志华,高洪梅. 考虑黏土片不规则形状的黏土离散元模拟方法. 岩土工程学报. 2022(09): 1654-1662 . 本站查看
    62. 范文,魏亚妮,于渤,邓龙胜,于宁宇. 黄土湿陷微观机理研究现状及发展趋势. 水文地质工程地质. 2022(05): 144-156 .
    63. 张兴臣,梁庆国,孙文,曹小平. 地震作用下黄土边坡动力响应的时频特征分析. 地震工程学报. 2022(05): 1090-1099 .
    64. 包含,马扬帆,兰恒星,彭建兵,张科科,许江波,晏长根,孙强. 基于微结构量化的含渐变带黄土各向异性特征研究. 中国公路学报. 2022(10): 88-99 .
    65. 董彤,孔亮,郑颖人. 土的应力方向依赖性(Ⅰ):概念与现象. 地下空间与工程学报. 2022(05): 1452-1464 .
    66. 薄英鋆,王华宁,蒋明镜,车纳. 隧道力学状态离散元模拟中的粒径效应. 地下空间与工程学报. 2022(05): 1471-1480 .
    67. 骆莉莎,孙天佑,申志福,周峰. 非饱和土中弯液面形态与液桥力的分子动力学模拟. 南京工业大学学报(自然科学版). 2022(06): 675-683+690 .
    68. 郭伟超,祁长青,李青朋,甘飞飞. 不同固化剂含量改良砂土力学特性数值模拟. 河北工程大学学报(自然科学版). 2022(04): 49-55 .
    69. 董彤,孔亮,郑颖人. 土的应力方向依赖性(Ⅱ):理论与模型. 地下空间与工程学报. 2022(06): 1789-1798 .
    70. 周小文,许衍彬,赵仕威,陈昊,张昌辉. 偏心率对颗粒介质次生各向异性的影响. 华南理工大学学报(自然科学版). 2022(11): 141-154 .
    71. Chengsheng Li,Lingwei Kong,Ran An. Evolution of cracks in the shear bands of granite residual soil. Journal of Rock Mechanics and Geotechnical Engineering. 2022(06): 1956-1966 .
    72. WenDong Xu,XueFeng Li,WenWei Yang,HongJin Jia. Triaxial test on glass beads simulating coarse-grained soil. Research in Cold and Arid Regions. 2022(04): 287-294 .
    73. 张伏光,聂卓琛,陈孟飞,冯怀平. 不排水循环荷载条件下胶结砂土宏微观力学性质离散元模拟研究. 岩土工程学报. 2021(03): 456-464 . 本站查看
    74. 陈强. 岩土工程实践工作中土力学相关问题研究. 四川水泥. 2021(03): 318-319 .
    75. 申志福,高峰,蒋明镜,王志华,刘璐,高洪梅. 黏土片与球状颗粒间范德华作用的简便计算方法. 岩土工程学报. 2021(04): 776-782 . 本站查看
    76. 胡世丽,蒋冰. 级配和含水量对赣南红土抗剪强度特性影响的试验研究. 江西理工大学学报. 2021(01): 1-6 .
    77. 葛娟,刘培成,陈忠清,吕越,祁娅颖. 扁铲探头贯入过程的颗粒流数值模拟. 科技通报. 2021(04): 109-114 .
    78. 申志福,孙天佑,白宇帆,蒋明镜,周峰. 基于电镜成像原理的黏土微结构参数提取方法. 岩土工程学报. 2021(05): 933-939 . 本站查看
    79. 陈科平,任新开,贺勇,吴丹伟. 吹填土砂井地基离心模型试验研究. 中南大学学报(自然科学版). 2021(04): 1222-1231 .
    80. 赵金玓,高宇甲,霍继炜,韩明涛,姜彤,张俊然,朱云江. 结构性对黄土抗剪强度的影响研究——以国道G310三门峡段为例. 水利与建筑工程学报. 2021(02): 6-11 .
    81. 尧俊凯,陈晓斌,蔡德钩,胡航,谢康,吴梦黎. 基于X-ray CT粗粒土填料细观结构表征分析. 铁道建筑. 2021(05): 70-74 .
    82. 陈剑平,刘经,王清,韩岩,王加奇,李兴华. 含水率对分散性土抗剪强度特性影响的微观解释. 吉林大学学报(地球科学版). 2021(03): 792-803 .
    83. 赵亚鹏,孔亮. 基于工程实例的非线性问题数值软件选取分析. 科学技术与工程. 2021(15): 6114-6122 .
    84. 蒋明镜,陈意茹,卢国文. 一种实用型深海能源土多场耦合离散元数值方法. 岩土工程学报. 2021(08): 1391-1398 . 本站查看
    85. 蔡正银,朱洵,代志宇. 考虑密度影响的砂土静止土压力系数研究. 岩石力学与工程学报. 2021(08): 1664-1671 .
    86. 崔建国,田野,刘君巍,侯绪研,崔江磊,杨飞,王晶,关祥毅. 月壤临界尺度颗粒运移特性对钻采阻力影响研究. 岩土工程学报. 2021(09): 1715-1723 . 本站查看
    87. 赵亚鹏,刘乐乐,孔亮,刘昌岭,吴能友. 含天然气水合物土微观力学特性研究进展. 力学学报. 2021(08): 2119-2140 .
    88. 王怡舒,沈超敏,刘斯宏,陈静涛. 考虑颗粒转矩的接触网络诱发各向异性分析. 力学学报. 2021(06): 1634-1646 .
    89. 邹宇雄,马刚,李易奥,王頔,邱焕峰,周伟. 椭球颗粒体系剪切过程中自由体积的分布与演化. 力学学报. 2021(09): 2374-2383 .
    90. 张鸿勇,张艳杰,刘春,施斌,曹政. 基于离散元孔隙密度流法的地铁隧道收敛变形注浆整治分析. 隧道与地下工程灾害防治. 2021(03): 100-110 .
    91. 邓津,安亮,王盛年. 黄土取土方向微观分析与动三轴颗粒流模拟研究. 东南大学学报(自然科学版). 2021(05): 833-840 .
    92. 吴晓. 往复剪切作用下砂泥岩混合料力学特性分析. 水利水运工程学报. 2021(05): 84-91 .
    93. 魏立新,杨春山,莫海鸿,陈俊生,徐世杨. 盾构竖井垂直顶管顶升力模型试验及离散元分析. 中南大学学报(自然科学版). 2021(10): 3595-3604 .
    94. 李顺,吴晓. 泥岩颗粒含量对砂泥岩混合料剪切特性的影响. 水运工程. 2021(11): 192-197 .
    95. 蒋明镜,孙若晗,李涛,杨涛,谭亚飞鸥. 微生物处理砂土不排水循环三轴剪切CFD-DEM模拟. 岩土工程学报. 2020(01): 20-28 . 本站查看
    96. 张嘎,王刚,尹振宇,杨仲轩. 土的基本特性及本构关系. 土木工程学报. 2020(02): 105-118 .
    97. 蔺建国,叶加兵,邹维列. 孔隙溶液对膨胀土微观结构的影响. 华中科技大学学报(自然科学版). 2020(04): 12-17 .
    98. 李涛,蒋明镜,孙若晗. 多种应力路径下结构性土胶结破损演化规律离散元分析. 岩土工程学报. 2020(06): 1159-1166 . 本站查看
    99. 刘春,乐天呈,施斌,朱遥. 颗粒离散元法工程应用的三大问题探讨. 岩石力学与工程学报. 2020(06): 1142-1152 .
    100. 牛庚,邵龙潭,孙德安,韦昌富,郭晓霞,徐华. 土-水特征曲线测量过程中孔隙分布的演化规律探讨. 岩土力学. 2020(04): 1195-1202 .
    101. 周凤玺,王立业,赖远明. 饱和盐渍土渗透吸力的回顾及研究. 岩土工程学报. 2020(07): 1199-1210 . 本站查看
    102. 潘洪武,王伟,张丙印. 基于计算接触力学的粗颗粒土体材料细观性质模拟. 工程力学. 2020(07): 151-158 .
    103. 秦鹏飞. 不良地质体注浆细观力学模拟研究. 煤炭学报. 2020(07): 2646-2654 .
    104. 黄达,李悦,岑夺丰. 拉-压应力状态下脆性岩石强度及破坏机制颗粒流模拟. 工程地质学报. 2020(04): 677-684 .
    105. 蒋佳琪,徐日庆,俞建霖,裘志坚,秦建设,詹晓波. 一种基于蛋形函数的实用软土弹塑性本构理论(英文). Journal of Central South University. 2020(08): 2424-2439 .
    106. 王桂萱,鞠碧玉,秦建敏. 土-结构接触界面的宏细观参数敏感性分析. 扬州大学学报(自然科学版). 2020(03): 44-50 .
    107. 刘宽,叶万军,高海军,董琪. 干湿环境下膨胀土力学性能劣化的多尺度效应. 岩石力学与工程学报. 2020(10): 2148-2159 .
    108. 李福秀,吴志坚,严武建,赵多银. 基于振动台试验的黄土塬边斜坡动力响应特性研究. 岩土力学. 2020(09): 2880-2890 .
    109. 岑夺丰,刘超,黄达. 砂岩拉剪强度和破裂特征试验研究及数值模拟. 岩石力学与工程学报. 2020(07): 1333-1342 .
    110. 王晋伟,迟世春,邵晓泉,赵飞翔. 正交–等值线法在堆石料细观参数标定中的应用. 岩土工程学报. 2020(10): 1867-1875 . 本站查看
    111. 杨舒涵,周伟,马刚,刘嘉英,漆天奇. 粒间摩擦对岩土颗粒材料三维力学行为的影响机制. 岩土工程学报. 2020(10): 1885-1893 . 本站查看
    112. 江亚洲,李永强,汪刚,马荣,景立平. 轴向应力控制偏差对砂土液化特性影响研究. 岩石力学与工程学报. 2020(S1): 3023-3031 .
    113. 凌道盛,江琪熙,赵宇. 考虑基层裹挟的碎屑流铲刮效应数值模拟. 浙江大学学报(工学版). 2020(11): 2067-2075 .
    114. 吴焕然,刘汉龙,赵吉东,肖杨. 高孔隙率砂岩中破坏模式演化的多尺度分析. 岩土工程学报. 2020(12): 2222-2229 . 本站查看
    115. 蒋明镜,王华宁,李光帅,廖优斌,陈有亮,卫超群. 深部复合岩体隧道开挖离散元模拟. 岩土工程学报. 2020(S2): 20-25 . 本站查看
    116. 蒋明镜,吕雷,石安宁,曹培,吴晓峰. 适用于显微CT扫描的微型动三轴仪研制与试验验证. 岩土工程学报. 2020(S1): 214-218 . 本站查看
    117. 蒋明镜,李光帅,曹培,吴晓峰. 用于土体宏微观力学特性测试的微型三轴仪研制. 岩土工程学报. 2020(S1): 6-10 . 本站查看
    118. 戴轩,霍海峰,程雪松,郭旺,冯兴. 高水压作用下水砂耦合流失的DEM-CFD分析. 工业建筑. 2020(11): 82-90 .
    119. 杨惠. 黄土湿陷特性的微观研究进展及方法. 科学技术创新. 2019(21): 27-28 .
    120. 史旦达,王威,薛剑峰,邵伟. 压-剪复合应力下非球形颗粒材料空心圆柱剪切试验的离散元模拟. 水利学报. 2019(09): 1052-1062 .

    Other cited types(155)

Catalog

    Article views PDF downloads Cited by(275)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return