• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
XIAO Zhi-yong, WANG Chang-sheng, WANG Gang, JIANG Yu-jing, YU Jun-hong. Influences of matrix-fracture interaction on permeability evolution: considering matrix deformation and stress correction[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2209-2219. DOI: 10.11779/CJGE202112007
Citation: XIAO Zhi-yong, WANG Chang-sheng, WANG Gang, JIANG Yu-jing, YU Jun-hong. Influences of matrix-fracture interaction on permeability evolution: considering matrix deformation and stress correction[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2209-2219. DOI: 10.11779/CJGE202112007

Influences of matrix-fracture interaction on permeability evolution: considering matrix deformation and stress correction

More Information
  • Received Date: January 24, 2021
  • Available Online: November 30, 2022
  • Studying the permeability of coal seam is of guiding significance for the applicability and feasibility of rational mining of coalbed methane and other energy sources. A large number of current permeability models are established based on the elastic and adsorption strains. However, these models often treat the matrix as a rigid body and assume that the adsorption deformation is fully regulated by the fracture aperture when considering these two strains. The matrix deformation is neglected in predicting permeability, and the effect of adsorption swelling is also overestimated. Therefore, a new permeability model is proposed to predict reservoir permeability under different boundary conditions. The model proposes an internal expansion coefficient f to correct the effects of matrix adsorption on fracture aperture and external stress, and considers the deformation behavior of the fracture and matrix under the effective stress. To compare the effects of matrix deformation and stress correction on permeability, the three models for permeability under different boundary conditions are validated through the field data and laboratory data by comparing the model without considering stress correction and the model without considering the deformation of the matrix itself. The results show that the stress correction has a more significant effect on the permeability evolution under uniaxial strain, and that the model without consideration of both the stress correction and the deformation of the matrix will obtain higher internal expansion coefficient f. Finally, the proposed model is further compared with four classical models to illustrate again its superiority.
  • [1]
    VILLICAÑA-GARCÍA E, PONCE-ORTEGA J M. Sustainable strategic planning for a national natural gas energy system accounting for unconventional sources[J]. Energy Conversion and Management, 2019, 181: 382-397.
    [2]
    杨新乐, 张永利, 李成全, 等. 考虑温度影响下煤层气解吸渗流规律试验研究[J]. 岩土工程学报, 2008, 30(12): 1811-1814.

    YANG Xin-le, ZHANG Yong-li, LI Cheng-quan, et al. Experimental study on desorption and seepage rules of coal-bed gas considering temperature conditions[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(12): 1811-1814. (in Chinese)
    [3]
    CHEN Z W, LIU J S, PAN Z J, et al. Influence of the effective stress coefficient and sorption-induced strain on the evolution of coal permeability: Model development and analysis[J]. International Journal of Greenhouse Gas Control, 2012, 8: 101-110.
    [4]
    亓宪寅, 杨典森, 陈卫忠. 煤层气解吸滞后定量分析模型[J]. 煤炭学报, 2016, 41(增刊2): 475-481.

    QI Xian-yin, YANG Dian-sen, CHEN Wei-zhong. Research of a bidisperse diffusion model based on adsorption hysteresis[J]. Journal of China Coal Society, 2016, 41(S2): 475-481. (in Chinese)
    [5]
    GRAY I. Reservoir engineering in coal seams: part 1 the physical process of gas storage and movement in coal seams[J]. SPE Reservoir Engineering, 1987, 2(1): 28-34.
    [6]
    SEIDLE J P, JEANSONNE M W, ERICKSON D J. Application of matchstick geometry to stress dependent permeability in coals[C]//SPE Rocky Mountain Regional Meeting. Casper, 1992.
    [7]
    SEIDLE J R, HUITT L. Experimental measurement of coal matrix shrinkage due to gas desorption and implications for cleat permeability increases[C]//International Meeting on Petroleum Engineering. Beijing, 1995.
    [8]
    PALMER I, MANSOORI J. How permeability depends on stress and pore pressure in coalbeds: a new model[J]. SPE Reservoir Evaluation & Engineering, 1998, 1(6): 539-544.
    [9]
    SHI J Q, DURUCAN S. Drawdown induced changes in permeability of coalbeds: a new interpretation of the reservoir response to primary recovery[J]. Transport in Porous Media, 2004, 56(1): 1-16.
    [10]
    SHI J Q, DURUCAN S. A model for changes in coalbed permeability during primary and enhanced methane recovery[J]. SPE Reservoir Evaluation & Engineering, 2005, 8(4): 291-299.
    [11]
    CUI X J, BUSTIN R M. Volumetric strain associated with methane desorption and its impact on coalbed gas production from deep coal seams[J]. AAPG Bulletin, 2005, 89(9): 1181-1202.
    [12]
    CONNELL L D. A new interpretation of the response of coal permeability to changes in pore pressure, stress and matrix shrinkage[J]. International Journal of Coal Geology, 2016, 162: 169-182.
    [13]
    ROBERTSON E P. Measurement and modeling of sorption- induced strain and permeability changes in coal[R]. Idaho National Laboratory, 2005, INL/EXT-06-11832.
    [14]
    LIU H H, RUTQVIST J. A new coal-permeability model: internal swelling stress and fracture-matrix interaction[J]. Transport in Porous Media, 2010, 82(1): 157-171.
    [15]
    GUO P K, CHENG Y P, JIN K, et al. Impact of effective stress and matrix deformation on the coal fracture permeability[J]. Transport in Porous Media, 2014, 103(1): 99-115.
    [16]
    ZHOU Y B, LI Z H, YANG Y L, et al. Evolution of coal permeability with cleat deformation and variable Klinkenberg effect[J]. Transport in Porous Media, 2016, 115(1): 153-167.
    [17]
    LIU T, LIN B Q, YANG W. Impact of matrix-fracture interactions on coal permeability: model development and analysis[J]. Fuel, 2017, 207: 522-532.
    [18]
    JIANG C Z, ZHAO Z F, ZHANG X W, et al. Controlling effects of differential swelling index on evolution of coal permeability[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2020, 12(3): 461-472.
    [19]
    秘昭旭, 王福刚, 石娜, 等. 多期次应力变化对砂岩渗透率和孔隙结构影响的试验研究[J]. 岩土工程学报, 2018, 40(5): 864-871.

    MI Zhao-xu, WANG Fu-gang, SHI Na, et al. Experimental study on effect of multi-stage stress variations on permeability and pore structure of sandstone[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 864-871. (in Chinese)
    [20]
    ZANG J, WANG K, ZHAO Y X. Evaluation of gas sorption-induced internal swelling in coal[J]. Fuel, 2015, 143: 165-172.
    [21]
    WU Y, LIU J S, ELSWORTH D, et al. Dual poroelastic response of a coal seam to CO2 injection[J]. International Journal of Greenhouse Gas Control, 2010, 4(4): 668-678.
    [22]
    ROBERTSON E P, CHRISTIANSEN R L. A permeability model for coal and other fractured, sorptive-elastic media[J]. SPE Journal, 2008, 13(3): 314-324.
    [23]
    WARREN J E, ROOT P J. The behavior of naturally fractured reservoirs[J]. Society of Petroleum Engineers Journal, 1963, 3(3): 245-255.
    [24]
    张玉军, 张维庆. 一种双重孔隙介质水-应力耦合模型及其有限元分析[J]. 岩土工程学报, 2010, 32(3): 325-329.

    ZHANG Yu-jun, ZHANG Wei-qing. Coupled hydro- mechanical model and FEM analyses for dual-porosity media[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(3): 325-329. (in Chinese)
    [25]
    张宏学. 页岩储层渗流—应力耦合模型及应用[D]. 徐州: 中国矿业大学, 2015.

    ZHANG Hong-xue. Seepage and Stress Coupling Model for Shale Reservoir and Its Application[D]. Xuzhou: China University of Mining and Technology, 2015. (in Chinese)
    [26]
    CUI X, BUSTIN A M M, BUSTIN R M. Measurements of gas permeability and diffusivity of tight reservoir rocks: different approaches and their applications[J]. Geofluids, 2009, 9(3): 208-223.
    [27]
    WANG S G, ELSWORTH D, LIU J S. A mechanistic model for permeability evolution in fractured sorbing media[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B6). doi: 10.1029/2011jb008855.
    [28]
    LIU J S, CHEN Z W, ELSWORTH D, et al. Linking gas-sorption induced changes in coal permeability to directional strains through a modulus reduction ratio[J]. International Journal of Coal Geology, 2010, 83(1): 21-30.
    [29]
    MASSAROTTO P, GOLDING S, RUDOLPH V. Constant volume CBM reservoirs: an important principle[C]//2009 International Coalbed & Shale Gas Symposium, 2009.
    [30]
    潘哲军, 卢克·康奈尔. 煤的膨胀和收缩在二氧化碳增产煤层甲烷过程中的影响[J]. 中国煤层气, 2007, 4(1): 7-10.

    PAN Zhe-jun, CONNELL Luke. Effects of coal matrix shrinkage/swelling on enhanced CBM recovery through CO2 sequestration[J]. China Coalbed Methane, 2007, 4(1): 7-10. (in Chinese)
    [31]
    CHEN M, CHEN Z D. Effective stress laws for multi-porosity media[J]. Applied Mathematics and Mechanics, 1999, 20(11): 1207-1213.
    [32]
    ZHANG J C, ROEGIERS J C, BAI M. Dual-porosity elastoplastic analyses of non-isothermal one-dimensional consolidation[J]. Geotechnical & Geological Engineering, 2004, 22(4): 589-610.
    [33]
    LIU Q Q, CHENG Y P, ZHOU H X, et al. A mathematical model of coupled gas flow and coal deformation with gas diffusion and Klinkenberg effects[J]. Rock Mechanics and Rock Engineering, 2015, 48(3): 1163-1180.
    [34]
    LIU T, LIN B Q, YANG W, et al. Coal permeability evolution and gas migration under non-equilibrium state[J]. Transport in Porous Media, 2017, 118(3): 393-416.
    [35]
    PINI R, OTTIGER S, BURLINI L, et al. Role of adsorption and swelling on the dynamics of gas injection in coal[J]. Journal of Geophysical Research: Solid Earth, 2009, 114(B4): B04203.
  • Cited by

    Periodical cited type(9)

    1. 宋德坤,刘乐乐,王栋. 南海北部天然气水合物赋存区沉积物渗透性敏感规律试验研究. 地学前缘. 2024(06): 405-414 .
    2. 王丹,饶运章,刘戈,石亮,张美道. 离子型稀土镁盐浸矿不同深度矿土孔隙结构演化规律. 稀土. 2023(05): 92-102 .
    3. 李品良,许强,刘佳良,何攀,纪续,陈婉琳,彭大雷. 盐分影响重塑黄土渗透性的微观机制试验研究. 岩土力学. 2023(S1): 504-512 .
    4. 陈瑞敏,简文彬,张小芳,方泽化. CSFG-FR协同作用改良淤泥固化土性能试验研究. 岩土力学. 2022(04): 1020-1030 .
    5. 郭钟群,周可凡,金解放,周尖荣,尚白红. 流体理化特性对土体渗流规律影响研究进展. 有色金属科学与工程. 2022(04): 116-125 .
    6. 安鹏举,鲁莎,唐辉明,孙思璇,张子涵,缪明昊. 渗透作用下滑带细观结构演变特性. 地质科技通报. 2022(06): 169-179 .
    7. 张晓飞,陈新炜,严涛,张文伟,李守义. 基于裂缝冲刷试验的分散性土自愈性研究. 水资源与水工程学报. 2022(06): 167-173+181 .
    8. 陈仁祥,伏慧平,宋勇,王太伟,高柏. 稀土浸矿区山体滑坡特征及成因. 江西建材. 2021(01): 183-185 .
    9. 李文英,杨洋,曹成,许增光. 化学淤堵作用下尾矿砂孔隙分布及渗透特性试验研究. 水资源与水工程学报. 2021(03): 187-192 .

    Other cited types(22)

Catalog

    Article views (374) PDF downloads (125) Cited by(31)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return