• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
XU Yong-fu. Hydraulic mechanism and swelling deformation theory of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 1979-1987. DOI: 10.11779/CJGE202011002
Citation: XU Yong-fu. Hydraulic mechanism and swelling deformation theory of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 1979-1987. DOI: 10.11779/CJGE202011002

Hydraulic mechanism and swelling deformation theory of expansive soils

More Information
  • Received Date: March 18, 2020
  • Available Online: December 05, 2022
  • Theswelling deformation, crack growth and development and reduction of shear strength induced by the mineral-water interactions of expansive soils that including changes of water content and overburden loads are very important to the safety of expansive soil slopes. In addition, because of the electric charge on their mineral surface, the swelling behaviors of the expansive soils in pure water and salt solution are very different and always separated from each other, which and lack a unified theory of swelling deformation. The mineral-water interactions are explained by the isothermal water adsorption. According to the isothermal water adsorption, the increment of water volume (Vw) absorbed by montmorillonite during the swelling of expansive soils is dependent on the vertical overburden load and the surface fractality of mineral aggregates in voids. The water volume absorbed by montmorillonite is related to the surface fractal dimension and the vertical overburden pressure. The maximum swelling deformation is predicted according to the correlation of the absorbed water volume to vertical overburden pressure. The swelling deformation of expansive soils is affected by the osmotic suction in saline solutions. Based on the fractal model for the swelling deformation of expansive soils, the osmotic suction is transferred into the modified effective stress (pe) which is distinguished from the Terzaghi’s effective stress concept. The Vw/Vm-pe relationship is expressed using a unique curve for expansive soils in saline solutions. The unique curve of the absorbed water volume is validated by the experimental data of swelling deformation of expansive soils.
  • [1]
    徐永福, 刘松玉. 非饱和土强度理论及其工程应用[M]. 南京: 东南大学出版社, 1999.

    XU Yong-fu, LIU Song-yu. Strength Theory of Unsaturated Soil and Its Engineering Application[M]. Nanjing: Southeast University Press, 1999. (in Chinese)
    [2]
    徐永福, 陈永战, 刘松玉, 等. 非饱和膨胀土的三轴试验研究[J]. 岩土工程学报, 1998, 20(3): 14-18. doi: 10.3321/j.issn:1000-4548.1998.03.005

    XU Yong-fu, CHEN Yong-zhan, LIU Song-yu, et al. Triaxial text on unsaturated expansive soils[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(3): 14-18. (in Chinese) doi: 10.3321/j.issn:1000-4548.1998.03.005
    [3]
    徐永福. 膨胀土地基的处理方法[J]. 河海大学学报(自然科学版), 1998, 26(6): 26-30. doi: 10.3321/j.issn:1000-1980.1998.06.006

    XU Yong-fu. Methods of improvement for expansive soil basement[J]. Journal of Hohai University (Natural Sciences), 1998, 26(6): 26-30. (in Chinese) doi: 10.3321/j.issn:1000-1980.1998.06.006
    [4]
    徐永福, 龚友平, 殷宗泽. 非饱和膨胀土强度的分形特征[J]. 工程力学, 1998, 15(2): 76-81. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX802.010.htm

    XU Yong-fu, GONG You-ping, YIN Zong-ze. Fractal characteristics of shear strength for unsaturated expansive soils[J]. Engineering Mechanics, 1998, 15(2): 76-81. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX802.010.htm
    [5]
    徐永福, 龚友平, 殷宗泽. 宁夏膨胀土膨胀变形特征的试验研究[J]. 水利学报, 1997, 28(9): 27-30. doi: 10.3321/j.issn:0559-9350.1997.09.005

    XU Yong-fu, GONG You-ping, YIN Zong-ze. Tests on swelling deformation of expansive soils[J]. Journal of Hydraulic Engineering, 1997, 28(9): 27-30. (in Chinese) doi: 10.3321/j.issn:0559-9350.1997.09.005
    [6]
    徐永福, 史春乐. 宁夏膨胀土的膨胀变形规律[J]. 岩土工程学报, 1997, 19(3): 98-101. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC703.014.htm

    XU Yong-fu, SHI Chun-le. Swelling deformation of Ningxia expansive soil[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(3): 98-101. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC703.014.htm
    [7]
    徐永福. 膨胀土地基承载力研究[J]. 岩石力学与工程学报, 2000, 19(3): 387-390. doi: 10.3321/j.issn:1000-6915.2000.03.030

    XU Yong-fu. Study on bearing capacity of expansive soil basement[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(3): 387-390. (in Chinese) doi: 10.3321/j.issn:1000-6915.2000.03.030
    [8]
    徐永福. 非饱和膨胀土的结构模型和力学性质的研究[J]. 岩石力学与工程学报, 1998, 17(5): 610. doi: 10.3321/j.issn:1000-6915.1998.05.025

    XU Yong-fu. The structural model and the mechanical properties of unsaturated expansive soils[J]. Chinese Journal of Rock Mechanics and Engineering, 1998, 17(5): 610. (in Chinese) doi: 10.3321/j.issn:1000-6915.1998.05.025
    [9]
    徐永福. 膨胀土的浸水规律[J]. 河海大学学报(自然科学), 1998, 26(5): 66-70. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX805.012.htm

    XU Yong-fu. Laws on hydraulic conductivity of expansive soils[J]. Journal of Hohai University (Natural Sciences), 1998, 26(5): 66-70. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX805.012.htm
    [10]
    YONG R N, WARKENTIN B P. Soil Properties and Behavior[M]. Amsterdam: Elsevier, 1975.
    [11]
    MITCHELL J K, SOGA K. Fundamentals of Soil Behavior[M]. Hoboken: John Wiley & Sons, Inc., 2005.
    [12]
    BOLT G H. Physicochemical analysis of compressibility of pure clays[J]. Géotechnique, 1956, VI(2): 86-93.
    [13]
    KOMINE H, OGATA N. New equation for swelling character -istics of bentonite based buffer materials[J]. Canadian Geotechnical Journal, 2003, 40: 460-475. doi: 10.1139/t02-115
    [14]
    SPOSITO G. The Thermodynamic of Soil Solution[M]. London: Oxford Clarendon Press, 1981.
    [15]
    XU Y F, SUN D A. Application of fractal micropore to deter mination of unsaturated soil strength[J]. Fractals, 2001, 9(1): 51-60. doi: 10.1142/S0218348X01000506
    [16]
    FRIESEN W I, MIKULA R J. Fractal dimensions of coal particles[J]. J Coll Interf Sci, 1987, 120: 263-271. doi: 10.1016/0021-9797(87)90348-1
    [17]
    XU Y F. Surface irregularity of solids in molecular domain[J]. Chaos, Solitons & Fractals, 2004, 21(2): 435-444.
    [18]
    XU Y F. Surface fractal dimension of swelling clay minerals[J]. Fractals, 2003, 11(4): 353-362. doi: 10.1142/S0218348X03002245
    [19]
    XU Y F, LIU S Y. Fractal characteristic of grain-size distribution of expansive soil[J]. Fractals, 1999, 7(4): 359-366.
    [20]
    XU Y F, DONG P. Fractal approach to hydraulic properties in porous media[J]. Chaos, Solitons & Fractals, 2004, 19(2): 327-337.
    [21]
    XU Y F, MATSUOKA H, SUN D A. Swelling characteristics of fractal-textured bentonite and its mixtures[J]. Applied Clay Sci, 2003, 22(4): 197-209.
    [22]
    XU Y F, SUN D A, YAO Y P. Surface fractal dimension of bentonite and its application to determination of swelling properties[J]. Chaos, Solitons & Fractals, 2004, 19(2): 347-356.
    [23]
    AVNIR D, JARONIEC M. An isotherm equation for adsorption on fractal surfaces of heterogeneous porous materials[J]. Langmuir, 1989, 5: 1431-1433.
    [24]
    YONG R N. Soil suction and soil-water potential in swelling clays in engineered clay barriers[J]. Eng Geol, 1999, 54(1/2): 3-13.
    [25]
    MOLLINS L H, STEWART D I, COUSENS T W. Predicting the properties of bentonite-sand mixtures[J]. Clay Miner, 1996, 31: 243-252.
    [26]
    LOW P F. The Swelling of clay: II Montmorillonites[J]. Soil Sci Soc Am J, 1980, 44(4): 667-676.
    [27]
    徐永福. 高放废物地质处置库中膨润土的侵蚀机理和模型研究综述[J]. 地球科学进展, 2017, 32(10): 1050-1061. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201710006.htm

    XU Yong-fu. Mechanisms and models for bentonite erosion used for geologic[J]. Advances in Earth Science, 2017, 32(10): 1050-1061. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201710006.htm
    [28]
    MESRI G, OLSON R E. Consolidation characteristics of mont- morillonite[J]. Géotechnique, 1971, 21(4): 341-352.
    [29]
    STUDDS P G, STEWART D I, COUSENS T W. The effects of salt solutions on the properties of bentonite-sand mixtures[J]. Clay Miner, 1998, 33: 651-661.
    [30]
    DI MAIO C, SANTOLI L, SCHIAVONE P. Volume change behaviour of clays: the influence of mineral composition, pore fluid composition and stress state[J]. Mech Mater, 2004, 36: 435-451.
    [31]
    CALVELLO M, LASCO M, VASSALLO R. Compressibility and residual shear strength of smectitic clays: influence of pore aqueous solutions and organic solvents[J]. Riv Ital Geotec, 2005(1): 34-46.
  • Related Articles

    [1]KONG Desen, ZHAO Mingkai, SHI Jian, TENG Sen. A model for predicting gas-water relative permeability of rock media based on fractal dimension characteristics[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1421-1429. DOI: 10.11779/CJGE20220463
    [2]XIANG Guo-sheng, LÜ Li-yong, GE Lei, Zhou Yin-kang, XIE Sheng-hua. Effects of temperature on swelling characteristics of GMZ bentonite[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 77-84. DOI: 10.11779/CJGE202101009
    [3]LI Xiao-yue, XU Yong-fu. Method for calculating swelling deformation of bentonite in salt solution[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2353-2359. DOI: 10.11779/CJGE201912022
    [4]XU Yong-fu. Modified effective stress induced by osmotic suction and its validation in volume change and shear strength of bentonite in saline solutions[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 631-638. DOI: 10.11779/CJGE201904005
    [5]XU Yong-fu. Fractals in soil mechanics[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 16-20. DOI: 10.11779/CJGE2015S1004
    [6]WANG Baojun, SHI Bin, TANG Chaosheng. Study on 3D fractal dimension of clayey soil by use of GIS[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(2): 309-312.
    [7]WANG Lianguo, MIAO Xiexing, SONG Yang. Study on fractal feature in the process of deformation failure for floor strata[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(5): 536-539.
    [8]Wang Jin′an, Xie Heping. On anisotropic fractal and multi fractal properties of rock fracture surfaces[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(6): 19-24.
    [9]Wang Jinan, Xie Heping. Fractal Evolution of Surface Roughness and Mechanical Behavior of Rock Joints Under Shearing[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(4): 2-9.
    [10]Xie Heping. Fractal Description of Rock Joints[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(1): 18-23.
  • Cited by

    Periodical cited type(17)

    1. 马少春,刘宴利,鲍鹏,潘艳辉,郭成超. 聚丙烯酰胺(PAM)改良黄泛区粉土堤防水理特性试验. 人民黄河. 2025(01): 148-153 .
    2. 张凌凯,丁旭升,樊培培. 新疆北部重塑性黄土的力学特性规律及微观机制试验研究. 材料导报. 2025(03): 107-116 .
    3. 曹金生,武立波,孙萌萌,刘惠阳,杨嘉伟. 煤气化渣改良黄土的力学特性试验分析. 中国科技论文. 2024(01): 23-32 .
    4. 闵凡路,申政,李彦澄,袁大军,陈健,李凯. 盾构淤泥质废弃黏土氧化镁固化-碳化试验及碳化机制研究. 岩土力学. 2024(02): 364-374 .
    5. 余云燕,高远,杜乾中,牛浩莹. 矿渣微粉改良红层填料的力学特性及其机理分析. 兰州交通大学学报. 2024(04): 1-9 .
    6. 王宝成,罗崇亮,魏书宝,刘伟,靳伟,张鹏. 石灰改良陇东黄土静、动模量及其影响因素试验研究. 公路. 2024(11): 54-60 .
    7. 焦韩伟,雷天奇,陈振鹏. 非饱和人工制备遗址土渗水系数预测. 勘察科学技术. 2024(06): 5-9 .
    8. 满吉芳. 碱激发粉煤灰地质聚合物对黄土力学性能的改性研究. 水利水电技术(中英文). 2023(01): 207-215 .
    9. 文少杰,郑文杰,胡文乐. 铅污染对黄土宏观持水性能和微观结构演化的影响研究. 岩土力学. 2023(02): 451-460 .
    10. 熊潭清. 排水带加速黄土路基固结沉降的数值模拟研究. 河南科技. 2023(06): 53-57 .
    11. 颜荣涛,徐玉博,颜梦秋. 含水合物土体的土水特征曲线及渗透系数. 岩土工程学报. 2023(05): 921-930 . 本站查看
    12. 王敏,王照耀. 膨润土与聚丙烯酸钠混合料改良湿陷性黄土试验研究. 合成材料老化与应用. 2023(04): 79-82 .
    13. 艾昕. 黄土地区某高速公路段滑坡机理的现场试验研究. 山西建筑. 2022(21): 82-84 .
    14. 何玉琪,廖红建,倪诗雨,牛波. 超疏水材料改良黄土的宏微观抗渗机制研究. 西安交通大学学报. 2022(11): 62-71 .
    15. 南亚林,张鹏,秦仕伟,梁迪,宋学庆,曹宝花,赵丹妮,许江波. 纳米黏土改良黄土渗透试验研究. 公路. 2022(10): 362-367 .
    16. 陈林万,曹玉桃,杜杰,张晓超,裴向军. 改性纤维素和生石灰改良黄土的抗剪强度特性及微观结构试验研究. 地质灾害与环境保护. 2022(04): 41-50 .
    17. 祝艳波,李红飞,巨之通,兰恒星,刘振谦,韩宇涛. 黄土抗剪强度与耐崩解性能综合改良试验研究. 煤田地质与勘探. 2021(04): 221-233 .

    Other cited types(10)

Catalog

    Article views (441) PDF downloads (358) Cited by(27)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return