Citation: | CAO Sheng-fei, LIU Yue-miao, XIE Jing-li, YAN An, GAO Yu-feng, TONG Qiang. Experimental study on thermal expansion properties of GMZ bentonite[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 377-383. DOI: 10.11779/CJGE202202020 |
[1] |
王驹, 陈伟明, 苏锐, 等. 高放废物地质处置及其若干关键科学问题[J]. 岩石力学与工程学报, 2006, 25(4): 801–812. doi: 10.3321/j.issn:1000-6915.2006.04.015
WANG Ju, CHEN Wei-ming, SU Rui, et al. Geological disposal of high-level radioactive waste and its key scientific issues[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(4): 801–812. (in Chinese) doi: 10.3321/j.issn:1000-6915.2006.04.015
|
[2] |
刘月妙, 徐国庆, 刘淑芬. 高放废物地质处置库缓冲/回填材料性能测定[J]. 辐射防护, 1998, 18(4): 290–295. https://www.cnki.com.cn/Article/CJFDTOTAL-FSFH804.004.htm
LIU Yue-miao, XU Guo-qing, LIU Shu-fen. A study on buffer/backfill materials for hlw geological repository[J]. Radialization Protection, 1998, 18(4): 290–295. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FSFH804.004.htm
|
[3] |
操龙飞, 徐光, 邓鹏, 等. 钢的热膨胀特性研究[J]. 北京科技大学学报, 2014, 36(5): 639–643. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201405011.htm
CAO Long-fei, XU Guang, DENG Peng, et al. Study on thermal expansion properties of steels[J]. Journal of University of Science and Technology Beijing, 2014, 36(5): 639–643. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201405011.htm
|
[4] |
姚武, 郑欣. 配合比参数对混凝土热膨胀系数的影响[J]. 同济大学学报(自然科学版), 2007, 35(1): 77–81, 87. doi: 10.3321/j.issn:0253-374X.2007.01.016
YAO Wu, ZHENG Xin. Effect of mix proportion on coefficient of thermal expansion of concrete[J]. Journal of Tongji University (Natural Science), 2007, 35(1): 77–81, 87. (in Chinese) doi: 10.3321/j.issn:0253-374X.2007.01.016
|
[5] |
陈薇, 杜红秀. 高温对C80高性能混凝土热膨胀性能及其微结构的影响[J]. 中国科技论文, 2017, 12(13): 1477–1481. doi: 10.3969/j.issn.2095-2783.2017.13.006
CHEN Wei, DU Hong-xiu. Effect of high temperature on thermal expansion and microstructure of C80 high performance concrete[J]. China Sciencepaper, 2017, 12(13): 1477–1481. (in Chinese) doi: 10.3969/j.issn.2095-2783.2017.13.006
|
[6] |
刘海涛, 周辉, 胡大伟, 等. 含层理砂岩热膨胀系数的试验研究[J]. 岩土力学, 2017, 38(10): 2841–2846. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201710010.htm
LIU Hai-tao, ZHOU Hui, HU Da-wei, et al. Experiment study of thermal expansion coefficient of sandstone with beddings[J]. Rock and Soil Mechanics, 2017, 38(10): 2841–2846. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201710010.htm
|
[7] |
马占国, 唐芙蓉, 戚福周, 等. 高温砂岩热膨胀系数变化规律试验研究[J]. 采矿与安全工程学报, 2017, 34(1): 121–126. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201701019.htm
MA Zhan-guo, TANG Fu-rong, QI Fu-zhou, et al. Experimental study on thermal expansion coefficient changing rule of sandstone under high temperature[J]. Journal of Mining & Safety Engineering, 2017, 34(1): 121–126. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201701019.htm
|
[8] |
赵洪宝, 谌伦建. 石灰岩热膨胀特性试验研究[J]. 岩土力学, 2011, 32(6): 1725–1730. doi: 10.3969/j.issn.1000-7598.2011.06.022
ZHAO Hong-bao, CHEN Lun-jian. Experimental study of thermal expansion property of limestone[J]. Rock and Soil Mechanics, 2011, 32(6): 1725–1730. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.06.022
|
[9] |
AKESSON U. Extensometer Measurement of the Coefficient of Thermal Expansion of Rock[R]. Stockholm: Swedish National Testing and Research Institute, 2004.
|
[10] |
陈皓, 吕海波, 陈正汉. 高庙子膨润土在高温高压下的强度特性研究[J]. 岩土工程学报, 2018, 40(增刊1): 28–33. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2018S1006.htm
CHEN Hao, LÜ Hai-bo, CHEN Zheng-han. Strength properties of GMZ bentonite under high temperatures and pressure[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 28–33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2018S1006.htm
|
[11] |
刘俊新, 唐伟, 李军润, 等. 高温及碱性条件对高庙子钠基膨润土膨胀力的影响[J]. 岩土力学, 2021, 42(8): 2160–2172, 2184. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202108012.htm
LIU Jun-xin, TANG Wei, LI Jun-run, et al. An experimental research on swelling pressure of GMZ Na-bentonite submitted to the strong alkali-heat environment[J]. Rock and Soil Mechanics, 2021, 42(8): 2160–2172, 2184. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202108012.htm
|
[12] |
叶为民, 王琼, 潘虹, 等. 高压实高庙子膨润土的热传导性能[J]. 岩土工程学报, 2010, 32(6): 821–826. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201006003.htm
YE Wei-min, WANG Qiong, PAN Hong, et al. Thermal conductivity of compacted GMZ01 bentonite[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6): 821–826. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201006003.htm
|
[13] |
谢敬礼, 马利科, 高玉峰, 等. 北山花岗岩岩屑-膨润土混合材料导热性能研究[J]. 岩土力学, 2018, 39(8): 2823–2828, 2843. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201808014.htm
XIE Jing-li, MA Li-ke, GAO Yu-feng, et al. Thermal conductivity of mixtures of Beishan bentonite and crushed granite[J]. Rock and Soil Mechanics, 2018, 39(8): 2823–2828, 2843. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201808014.htm
|
[14] |
谈云志, 李辉, 王培荣, 等. 膨润土受热作用后的水-力性能研究[J]. 岩土力学, 2019, 40(2): 489–496. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201902010.htm
TAN Yun-zhi, LI Hui, WANG Pei-rong, et al. Hydro-mechanical performances of bentonite respond to heat-treated history[J]. Rock and Soil Mechanics, 2019, 40(2): 489–496. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201902010.htm
|
[15] |
唐朝生, 崔玉军, TANG A H, 等. 土体干燥过程中的体积收缩变形特征[J]. 岩土工程学报, 2011, 33(8): 1271–1279. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201108023.htm
TANG Chao-sheng, CUI Yu-jun, TANG A M, et al. Volumetric shrinkage characteristics of soil during drying[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(8): 1271–1279. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201108023.htm
|
[1] | JIA Rui, LI Yiqun, LEI Huayang, JIANG Yuxuan. Modification of structured Cam-clay model based on triaxial undrained effective stress path[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(1): 115-124. DOI: 10.11779/CJGE20231243 |
[2] | LI Xiao-yue, XU Yong-fu. Method for calculating swelling deformation of bentonite in salt solution[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2353-2359. DOI: 10.11779/CJGE201912022 |
[3] | DU Xiu-li, ZHANG Pei, XU Cheng-shun, LU De-chun. On principle of effective stress and effective stress[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 486-494. DOI: 10.11779/CJGE201803012 |
[4] | CHEN Yu-jiong. Examples of application of effective stress principle in China[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1674-1677. DOI: 10.11779/CJGE201509015 |
[5] | SHAO Long-tan, GUO Xiao-xia, ZHENG Guo-feng. Intergranular stress, soil skeleton stress and effective stress[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1478-1483. DOI: 10.11779/CJGE201508017 |
[6] | LU De-chun, DU Xiu-li, XU Cheng-shun. Analytical solutions to principle of effective stress[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 146-151. |
[7] | XING Yichuan, XIE Dingyi, WANG Xiaogang, LI Zhen. 3D effective stress of unsaturated loess[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(3): 288-293. |
[8] | XING Yichuan, XIE Dingyi, LI Zheng. Stress transmission mechanism and effective stress principle of unsaturated soil[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(1): 53-57. |
[9] | Zhao Yangsheng, Hu Yaoqing. Experimental Study of the Law of Effective Stress by Methane Pressure[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(3): 26-31. |
[10] | Chen Zhenghan, Wang Yongsheng, Xie Dingyi. Effective Stress in Unsaturated Soil[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(3): 62-69. |
1. |
马少春,刘宴利,鲍鹏,潘艳辉,郭成超. 聚丙烯酰胺(PAM)改良黄泛区粉土堤防水理特性试验. 人民黄河. 2025(01): 148-153 .
![]() | |
2. |
张凌凯,丁旭升,樊培培. 新疆北部重塑性黄土的力学特性规律及微观机制试验研究. 材料导报. 2025(03): 107-116 .
![]() | |
3. |
曹金生,武立波,孙萌萌,刘惠阳,杨嘉伟. 煤气化渣改良黄土的力学特性试验分析. 中国科技论文. 2024(01): 23-32 .
![]() | |
4. |
闵凡路,申政,李彦澄,袁大军,陈健,李凯. 盾构淤泥质废弃黏土氧化镁固化-碳化试验及碳化机制研究. 岩土力学. 2024(02): 364-374 .
![]() | |
5. |
余云燕,高远,杜乾中,牛浩莹. 矿渣微粉改良红层填料的力学特性及其机理分析. 兰州交通大学学报. 2024(04): 1-9 .
![]() | |
6. |
王宝成,罗崇亮,魏书宝,刘伟,靳伟,张鹏. 石灰改良陇东黄土静、动模量及其影响因素试验研究. 公路. 2024(11): 54-60 .
![]() | |
7. |
焦韩伟,雷天奇,陈振鹏. 非饱和人工制备遗址土渗水系数预测. 勘察科学技术. 2024(06): 5-9 .
![]() | |
8. |
满吉芳. 碱激发粉煤灰地质聚合物对黄土力学性能的改性研究. 水利水电技术(中英文). 2023(01): 207-215 .
![]() | |
9. |
文少杰,郑文杰,胡文乐. 铅污染对黄土宏观持水性能和微观结构演化的影响研究. 岩土力学. 2023(02): 451-460 .
![]() | |
10. |
熊潭清. 排水带加速黄土路基固结沉降的数值模拟研究. 河南科技. 2023(06): 53-57 .
![]() | |
11. |
颜荣涛,徐玉博,颜梦秋. 含水合物土体的土水特征曲线及渗透系数. 岩土工程学报. 2023(05): 921-930 .
![]() | |
12. |
王敏,王照耀. 膨润土与聚丙烯酸钠混合料改良湿陷性黄土试验研究. 合成材料老化与应用. 2023(04): 79-82 .
![]() | |
13. |
艾昕. 黄土地区某高速公路段滑坡机理的现场试验研究. 山西建筑. 2022(21): 82-84 .
![]() | |
14. |
何玉琪,廖红建,倪诗雨,牛波. 超疏水材料改良黄土的宏微观抗渗机制研究. 西安交通大学学报. 2022(11): 62-71 .
![]() | |
15. |
南亚林,张鹏,秦仕伟,梁迪,宋学庆,曹宝花,赵丹妮,许江波. 纳米黏土改良黄土渗透试验研究. 公路. 2022(10): 362-367 .
![]() | |
16. |
陈林万,曹玉桃,杜杰,张晓超,裴向军. 改性纤维素和生石灰改良黄土的抗剪强度特性及微观结构试验研究. 地质灾害与环境保护. 2022(04): 41-50 .
![]() | |
17. |
祝艳波,李红飞,巨之通,兰恒星,刘振谦,韩宇涛. 黄土抗剪强度与耐崩解性能综合改良试验研究. 煤田地质与勘探. 2021(04): 221-233 .
![]() |