• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CAO Sheng-fei, LIU Yue-miao, XIE Jing-li, YAN An, GAO Yu-feng, TONG Qiang. Experimental study on thermal expansion properties of GMZ bentonite[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 377-383. DOI: 10.11779/CJGE202202020
Citation: CAO Sheng-fei, LIU Yue-miao, XIE Jing-li, YAN An, GAO Yu-feng, TONG Qiang. Experimental study on thermal expansion properties of GMZ bentonite[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 377-383. DOI: 10.11779/CJGE202202020

Experimental study on thermal expansion properties of GMZ bentonite

More Information
  • Received Date: May 25, 2021
  • Available Online: September 22, 2022
  • Laboratory tests are conducted on the compacted Gaomiaozi (GMZ) bentonite by using the DIL 806 thermal dilatometer. The influences of different factors on the thermal expansion properties of the bentonite are systematically analyzed. The thermal expansion coefficient of the bentonite is obtained with the dry density, the heating rate, the water content and the atmosphere environment. The experimental results show that the coefficient of thermal expansion increases with the dry density of the bentonite. The coefficient of thermal expansion decreases with the increase of the initial water content. The coefficient of thermal expansion increases with the increase of the heating rate for the samples with high water content, and the coefficient of thermal expansion decreases with the increase of the heating rate for the drying bentonite. Under the same dry density and water content of the samples, the coefficient of thermal expansion is higher in the air environment than that in the Ar gas environment. The research results have certain reference for analyzing the thermal expansion properties of the bentonite and evaluating the long-term stability of buffer materials for high-level radioactive waste disposal.
  • [1]
    王驹, 陈伟明, 苏锐, 等. 高放废物地质处置及其若干关键科学问题[J]. 岩石力学与工程学报, 2006, 25(4): 801–812. doi: 10.3321/j.issn:1000-6915.2006.04.015

    WANG Ju, CHEN Wei-ming, SU Rui, et al. Geological disposal of high-level radioactive waste and its key scientific issues[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(4): 801–812. (in Chinese) doi: 10.3321/j.issn:1000-6915.2006.04.015
    [2]
    刘月妙, 徐国庆, 刘淑芬. 高放废物地质处置库缓冲/回填材料性能测定[J]. 辐射防护, 1998, 18(4): 290–295. https://www.cnki.com.cn/Article/CJFDTOTAL-FSFH804.004.htm

    LIU Yue-miao, XU Guo-qing, LIU Shu-fen. A study on buffer/backfill materials for hlw geological repository[J]. Radialization Protection, 1998, 18(4): 290–295. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FSFH804.004.htm
    [3]
    操龙飞, 徐光, 邓鹏, 等. 钢的热膨胀特性研究[J]. 北京科技大学学报, 2014, 36(5): 639–643. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201405011.htm

    CAO Long-fei, XU Guang, DENG Peng, et al. Study on thermal expansion properties of steels[J]. Journal of University of Science and Technology Beijing, 2014, 36(5): 639–643. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201405011.htm
    [4]
    姚武, 郑欣. 配合比参数对混凝土热膨胀系数的影响[J]. 同济大学学报(自然科学版), 2007, 35(1): 77–81, 87. doi: 10.3321/j.issn:0253-374X.2007.01.016

    YAO Wu, ZHENG Xin. Effect of mix proportion on coefficient of thermal expansion of concrete[J]. Journal of Tongji University (Natural Science), 2007, 35(1): 77–81, 87. (in Chinese) doi: 10.3321/j.issn:0253-374X.2007.01.016
    [5]
    陈薇, 杜红秀. 高温对C80高性能混凝土热膨胀性能及其微结构的影响[J]. 中国科技论文, 2017, 12(13): 1477–1481. doi: 10.3969/j.issn.2095-2783.2017.13.006

    CHEN Wei, DU Hong-xiu. Effect of high temperature on thermal expansion and microstructure of C80 high performance concrete[J]. China Sciencepaper, 2017, 12(13): 1477–1481. (in Chinese) doi: 10.3969/j.issn.2095-2783.2017.13.006
    [6]
    刘海涛, 周辉, 胡大伟, 等. 含层理砂岩热膨胀系数的试验研究[J]. 岩土力学, 2017, 38(10): 2841–2846. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201710010.htm

    LIU Hai-tao, ZHOU Hui, HU Da-wei, et al. Experiment study of thermal expansion coefficient of sandstone with beddings[J]. Rock and Soil Mechanics, 2017, 38(10): 2841–2846. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201710010.htm
    [7]
    马占国, 唐芙蓉, 戚福周, 等. 高温砂岩热膨胀系数变化规律试验研究[J]. 采矿与安全工程学报, 2017, 34(1): 121–126. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201701019.htm

    MA Zhan-guo, TANG Fu-rong, QI Fu-zhou, et al. Experimental study on thermal expansion coefficient changing rule of sandstone under high temperature[J]. Journal of Mining & Safety Engineering, 2017, 34(1): 121–126. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201701019.htm
    [8]
    赵洪宝, 谌伦建. 石灰岩热膨胀特性试验研究[J]. 岩土力学, 2011, 32(6): 1725–1730. doi: 10.3969/j.issn.1000-7598.2011.06.022

    ZHAO Hong-bao, CHEN Lun-jian. Experimental study of thermal expansion property of limestone[J]. Rock and Soil Mechanics, 2011, 32(6): 1725–1730. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.06.022
    [9]
    AKESSON U. Extensometer Measurement of the Coefficient of Thermal Expansion of Rock[R]. Stockholm: Swedish National Testing and Research Institute, 2004.
    [10]
    陈皓, 吕海波, 陈正汉. 高庙子膨润土在高温高压下的强度特性研究[J]. 岩土工程学报, 2018, 40(增刊1): 28–33. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2018S1006.htm

    CHEN Hao, LÜ Hai-bo, CHEN Zheng-han. Strength properties of GMZ bentonite under high temperatures and pressure[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 28–33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2018S1006.htm
    [11]
    刘俊新, 唐伟, 李军润, 等. 高温及碱性条件对高庙子钠基膨润土膨胀力的影响[J]. 岩土力学, 2021, 42(8): 2160–2172, 2184. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202108012.htm

    LIU Jun-xin, TANG Wei, LI Jun-run, et al. An experimental research on swelling pressure of GMZ Na-bentonite submitted to the strong alkali-heat environment[J]. Rock and Soil Mechanics, 2021, 42(8): 2160–2172, 2184. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202108012.htm
    [12]
    叶为民, 王琼, 潘虹, 等. 高压实高庙子膨润土的热传导性能[J]. 岩土工程学报, 2010, 32(6): 821–826. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201006003.htm

    YE Wei-min, WANG Qiong, PAN Hong, et al. Thermal conductivity of compacted GMZ01 bentonite[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6): 821–826. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201006003.htm
    [13]
    谢敬礼, 马利科, 高玉峰, 等. 北山花岗岩岩屑-膨润土混合材料导热性能研究[J]. 岩土力学, 2018, 39(8): 2823–2828, 2843. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201808014.htm

    XIE Jing-li, MA Li-ke, GAO Yu-feng, et al. Thermal conductivity of mixtures of Beishan bentonite and crushed granite[J]. Rock and Soil Mechanics, 2018, 39(8): 2823–2828, 2843. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201808014.htm
    [14]
    谈云志, 李辉, 王培荣, 等. 膨润土受热作用后的水-力性能研究[J]. 岩土力学, 2019, 40(2): 489–496. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201902010.htm

    TAN Yun-zhi, LI Hui, WANG Pei-rong, et al. Hydro-mechanical performances of bentonite respond to heat-treated history[J]. Rock and Soil Mechanics, 2019, 40(2): 489–496. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201902010.htm
    [15]
    唐朝生, 崔玉军, TANG A H, 等. 土体干燥过程中的体积收缩变形特征[J]. 岩土工程学报, 2011, 33(8): 1271–1279. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201108023.htm

    TANG Chao-sheng, CUI Yu-jun, TANG A M, et al. Volumetric shrinkage characteristics of soil during drying[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(8): 1271–1279. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201108023.htm
  • Related Articles

    [1]JIA Rui, LI Yiqun, LEI Huayang, JIANG Yuxuan. Modification of structured Cam-clay model based on triaxial undrained effective stress path[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(1): 115-124. DOI: 10.11779/CJGE20231243
    [2]LI Xiao-yue, XU Yong-fu. Method for calculating swelling deformation of bentonite in salt solution[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2353-2359. DOI: 10.11779/CJGE201912022
    [3]DU Xiu-li, ZHANG Pei, XU Cheng-shun, LU De-chun. On principle of effective stress and effective stress[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 486-494. DOI: 10.11779/CJGE201803012
    [4]CHEN Yu-jiong. Examples of application of effective stress principle in China[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1674-1677. DOI: 10.11779/CJGE201509015
    [5]SHAO Long-tan, GUO Xiao-xia, ZHENG Guo-feng. Intergranular stress, soil skeleton stress and effective stress[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1478-1483. DOI: 10.11779/CJGE201508017
    [6]LU De-chun, DU Xiu-li, XU Cheng-shun. Analytical solutions to principle of effective stress[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 146-151.
    [7]XING Yichuan, XIE Dingyi, WANG Xiaogang, LI Zhen. 3D effective stress of unsaturated loess[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(3): 288-293.
    [8]XING Yichuan, XIE Dingyi, LI Zheng. Stress transmission mechanism and effective stress principle of unsaturated soil[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(1): 53-57.
    [9]Zhao Yangsheng, Hu Yaoqing. Experimental Study of the Law of Effective Stress by Methane Pressure[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(3): 26-31.
    [10]Chen Zhenghan, Wang Yongsheng, Xie Dingyi. Effective Stress in Unsaturated Soil[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(3): 62-69.
  • Cited by

    Periodical cited type(17)

    1. 马少春,刘宴利,鲍鹏,潘艳辉,郭成超. 聚丙烯酰胺(PAM)改良黄泛区粉土堤防水理特性试验. 人民黄河. 2025(01): 148-153 .
    2. 张凌凯,丁旭升,樊培培. 新疆北部重塑性黄土的力学特性规律及微观机制试验研究. 材料导报. 2025(03): 107-116 .
    3. 曹金生,武立波,孙萌萌,刘惠阳,杨嘉伟. 煤气化渣改良黄土的力学特性试验分析. 中国科技论文. 2024(01): 23-32 .
    4. 闵凡路,申政,李彦澄,袁大军,陈健,李凯. 盾构淤泥质废弃黏土氧化镁固化-碳化试验及碳化机制研究. 岩土力学. 2024(02): 364-374 .
    5. 余云燕,高远,杜乾中,牛浩莹. 矿渣微粉改良红层填料的力学特性及其机理分析. 兰州交通大学学报. 2024(04): 1-9 .
    6. 王宝成,罗崇亮,魏书宝,刘伟,靳伟,张鹏. 石灰改良陇东黄土静、动模量及其影响因素试验研究. 公路. 2024(11): 54-60 .
    7. 焦韩伟,雷天奇,陈振鹏. 非饱和人工制备遗址土渗水系数预测. 勘察科学技术. 2024(06): 5-9 .
    8. 满吉芳. 碱激发粉煤灰地质聚合物对黄土力学性能的改性研究. 水利水电技术(中英文). 2023(01): 207-215 .
    9. 文少杰,郑文杰,胡文乐. 铅污染对黄土宏观持水性能和微观结构演化的影响研究. 岩土力学. 2023(02): 451-460 .
    10. 熊潭清. 排水带加速黄土路基固结沉降的数值模拟研究. 河南科技. 2023(06): 53-57 .
    11. 颜荣涛,徐玉博,颜梦秋. 含水合物土体的土水特征曲线及渗透系数. 岩土工程学报. 2023(05): 921-930 . 本站查看
    12. 王敏,王照耀. 膨润土与聚丙烯酸钠混合料改良湿陷性黄土试验研究. 合成材料老化与应用. 2023(04): 79-82 .
    13. 艾昕. 黄土地区某高速公路段滑坡机理的现场试验研究. 山西建筑. 2022(21): 82-84 .
    14. 何玉琪,廖红建,倪诗雨,牛波. 超疏水材料改良黄土的宏微观抗渗机制研究. 西安交通大学学报. 2022(11): 62-71 .
    15. 南亚林,张鹏,秦仕伟,梁迪,宋学庆,曹宝花,赵丹妮,许江波. 纳米黏土改良黄土渗透试验研究. 公路. 2022(10): 362-367 .
    16. 陈林万,曹玉桃,杜杰,张晓超,裴向军. 改性纤维素和生石灰改良黄土的抗剪强度特性及微观结构试验研究. 地质灾害与环境保护. 2022(04): 41-50 .
    17. 祝艳波,李红飞,巨之通,兰恒星,刘振谦,韩宇涛. 黄土抗剪强度与耐崩解性能综合改良试验研究. 煤田地质与勘探. 2021(04): 221-233 .

    Other cited types(10)

Catalog

    Article views (194) PDF downloads (127) Cited by(27)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return