Citation: | HOU Tian-shun, XU Guang-li. Optimum water content models and tests of lightweight soil[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(7): 1129-1134. |
[1] |
黄 英, 符必昌. 确定土的最大干密度和最优含水率的数解法[J]. 岩土工程学报, 2002,24 (4): 538–540. (HUANG Ying, FU Bi-chang. Thenumerical solutions of maximum dry density and optimum water content of soil [J]. Chinese Journal of Geotechnical Engineering, 2002,24 (4): 538–540. (in Chinese))
|
[2] |
JESMANI M, MANESH A N,HOSEINI S M R. Optimum water content and maximum dry unit weight of clayey gravels at different compactive efforts[J]. Electronic Journal of Geotechnical Engineering, 2008, 13L.
|
[3] |
BLOTZ L R, BENSON C H,BOUTWELL G P. Estimating optimum water content and maximum dry unit weight forcompacted clays[J]. Journal of Geotechnical and Geoenvironmental Engineering,1998,124 (9): 907–912.
|
[4] |
BARDEN L.Consolidation of clays compacted ‘dry’ and ‘wet’ of optimum water content[J].Geotechnique, 1974,24 (4): 605–625.
|
[5] |
张志权, 王志勇. 最大干密度和最优含水率的准确性探讨[J]. 长安大学学报, 2004,21 (2):7–10. (ZHANG Zhi-quan, WANG Zhi-yong. Discussion on precision of biggest dry density and optimum water content[J]. Journal of Chang’an University, 2004,21 (2): 7–10. (in Chinese))
|
[6] |
董金梅. 聚苯乙烯轻质混合土工程特性的试验研究[D]. 南京: 河海大学, 2005. (DONG Jin-mei. Study onthe engineering characteristic of light heterogeneous soil mixed expanded polystyrene[D]. Nanjing: Hohai University, 2005. (in Chinese))
|
[7] |
侯天顺, 徐光黎. 发泡颗粒混合轻量土三轴应力-应变-孔压特性试验[J]. 中国公路学报, 2009,22 (6):10–17. (HOU Tian-shun, XU Guang-li. Experiment on triaxial pore water pressure-stress-strain characteristics of foamed particle light weight soil[J].China Journal of Highway and Transport, 2009,22 (6): 10–17. (in Chinese))
|
[8] |
王庶懋. 砂土与EPS颗粒混合的轻质土(LSES)动力特性的试验研究[D]. 南京: 河海大学, 2007. (WANG Shu-mao. Experimental study on dynamic characteristics of light weight sand-EPS beads soil(LSES)[D]. Nanjing: Hohai University, 2007.(in Chinese))
|
[9] |
马时冬. 聚苯乙烯泡沫塑料轻质填土(SLS)的特性[J].岩土力学,2001,22 (3): 245–248. (MA Shi-dong. The properties ofstabilized light soil(SLS) with expanded polystyrene[J]. Rock and SoilMechanics, 2001,22 (3): 245–248.(in Chinese))
|
[10] |
KIKU H, OMINE K, KAWANO H,et al. Experimental study on static strength of light weight soil in Japan[C]//Proceeding of the International Workshop on Light Weight Geo-Materials(IW-LGM2002).Tokyo, 2002: 3–22.
|
[11] |
顾欢达, 顾 熙, 申 燕, 等. 发泡颗粒轻质土材料的基本性质[J].苏州科技学院学报, 2003, 16 (4): 44–48. (GUHuan-da, GU Xi, SHEN Yan, et al. The fundamental properties of light soil mixed with foamed beads[J]. Journal of University of Science and Technology of Suzhou, 2003,16 (4): 44–48. (in Chinese))
|
[12] |
朱 伟, 李明东, 张春雷, 等. 砂土EPS颗粒混合轻质土的最优击实含水率[J]. 岩土工程学报, 2009,31 (1): 21–25. (ZHU Wei, LI Ming-dong, ZHANG Chun-lei, et al. The optimum moisture content of sand EPS beads mixed light weight soil[J]. Chinese Journal of Geotechnical Engineering, 2009,31 (1):21–25. (inChinese))
|
[13] |
GB/T50123—1999土工试验方法标准[S]. 1999. (GB/T50123—1999 Standard for soil test method[S]. 1999. (in Chinese))
|
[14] |
李明东, 朱 伟, 张春雷. 软夹杂土体的击实模型[J].土木工程学报, 2009,42 (12):149–153. (LI Ming-dong, ZHU Wei, ZHANG Chun-lei. A compaction model of soft inclusion soils[J]. China Civil Engineering Journal, 2009,42 (12): 149–153. (in Chinese))
|
[15] |
李亚杰, 方坤河. 建筑材料[M]. 北京: 中国水利水电出版社, 2009. (LI Ya-jie, FANG Kun-he. Building materials[M]. Beijing: China Water Power Press, 2009. (in Chinese))
|
[1] | YING Sai, XIA Xiaozhou, WEN Tao, ZHOU Fengxi, CAO Yapeng, LI Guoyu, ZHANG Qing. Experimental study on freezing characteristic curve of soils based on nuclear magnetic resonance technology[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1437-1444. DOI: 10.11779/CJGE20230301 |
[2] | TAO Gaoliang, PENG Yinjie, CHEN Yin, XIAO Henglin, LUO Chenchen, ZHONG Chuheng, LEI Da. A new fast prediction method for relative permeability coefficient of unsaturated soils based on NMR[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(3): 470-479. DOI: 10.11779/CJGE20221426 |
[3] | WANG Enliang, LI Yuang, REN Zhifeng, JIANG Haiqiang, LIU Chengqian, ZOU Yiyun, DU Shilin. Microstructural change of improved dispersive soil based on scanning electron microscope and nuclear magnetic resonance technology[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1123-1132. DOI: 10.11779/CJGE20220331 |
[4] | LIU Qian-qian, CAI Guo-qing, HAN Bo-wen, QIN Yu-teng, LI Jian. Experimental study on pore structure and freezing characteristics of graded soils based on NMR[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 178-182. DOI: 10.11779/CJGE2022S1032 |
[5] | TIAN Jia-li, WANG Hui-min, LIU Xing-xing, XIANG Lei, SHENG JIN-chang, LUO Yu-long, ZHAN Mei-li. Permeability characteristics of sandstone based on NMR-coupled real-time seepage[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1671-1678. DOI: 10.11779/CJGE202209012 |
[6] | MA Dong-dong, MA Qin-yong, HUANG Kun, ZHANG Rong-rong. Pore structure and dynamic mechanical properties of geopolymer cement soil based on nuclear magnetic resonance technique[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 572-578. DOI: 10.11779/CJGE202103021 |
[7] | WANG Ying, LIU Jin, MA Xiao-fan, QI Chang-qing, LU Hong-ning. Immersion effect of polyurethane-reinforced sand based on NMR[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2342-2349. DOI: 10.11779/CJGE202012023 |
[8] | CHENG Hua, CHEN Han-qing, CAO Guang-yong, RONG Chuan-Xin, YAO Zhi-shu, CAI Hai-bing. Migration mechanism of capillary-film water in frozen soil and its experimental verification[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1790-1799. DOI: 10.11779/CJGE202010003 |
[9] | DU Yang, Tang Li-yun, YANG Liu-jun, WANG Xin, BAI Miao-miao. Interface characteristics of frozen soil-structure thawing process based on nuclear magnetic resonance[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2316-2322. DOI: 10.11779/CJGE201912017 |
[10] | AN Ai-jun, LIAO Jing-yun. Modified mesostructure of Standard Gange Railway expansive soils of Mombasa- Nairobi based on nuclear magnetic resonance and scanning electron microscope[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 152-156. DOI: 10.11779/CJGE2018S2031 |