• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Enliang, LI Yuang, REN Zhifeng, JIANG Haiqiang, LIU Chengqian, ZOU Yiyun, DU Shilin. Microstructural change of improved dispersive soil based on scanning electron microscope and nuclear magnetic resonance technology[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1123-1132. DOI: 10.11779/CJGE20220331
Citation: WANG Enliang, LI Yuang, REN Zhifeng, JIANG Haiqiang, LIU Chengqian, ZOU Yiyun, DU Shilin. Microstructural change of improved dispersive soil based on scanning electron microscope and nuclear magnetic resonance technology[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1123-1132. DOI: 10.11779/CJGE20220331

Microstructural change of improved dispersive soil based on scanning electron microscope and nuclear magnetic resonance technology

More Information
  • Received Date: March 23, 2022
  • Available Online: February 19, 2023
  • The dispersive clay is a special clay that is easy to disperse and disintegrate in low salt water. This characteristic leads to the instability and failure of many water conservancy and geotechnical projects. The dispersive clay is widely distributed in Northeast China. In order to improve the erosion resistance of the dispersive clay, explore the evolution characteristics of pore structure of the dispersive soil and analyze the action mechanism of the lignin-improved dispersive soil, the dispersive soil of Nenjiang River Diversion Project in the south of Heilongjiang Province is taken as the research object, and the dispersity, element composition and microstructure of different lignin contents (0%~10%) are tested and observed through the dispersity identification tests, scanning electron microscope (SEM) tests and nuclear magnetic resonance (NMR) tests. The test results show that: (1) The lignin can effectively improve the dispersibility of the dispersive soil. The anti-erosion capability of the soil can be effectively strengthened if the lignin content is≥3% and the curing age is≥7 days. (2) The SEM image analysis and the NMR tests have good consistency. With the increase of the lignin content, the micro-pores in the soil gradually develop into large pores, and the porosity first decreases and then increases. Under the action of freeze-thaw cycle, the large pores in the soil show an increasing trend, which has a more significant impact on the modified soil when the lignin content ≤ 5%. (3) Ca2+ in lignin reacts with Na+ in the soil by ion exchange, which can be adsorbed on the surface of the soil and form a hydrophobic layer to improve their erosion resistance. However, due to the excessive lignin content and mutual adsorption of its own sulfonic acid groups, the viscosity of the soil increases, and it is difficult to compact and form macroporous defects. The appropriate amount of lignin can produce a good modification effect on the dispersive soil, fill the soil pores and improve the erosion resistance of the soil, which may provide a theoretical reference for the pore structure and practical engineering performance of the dispersive soil.
  • [1]
    陈正汉, 郭楠. 非饱和土与特殊土力学及工程应用研究的新进展[J]. 岩土力学, 2019, 40(1): 1-54. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901002.htm

    CHEN Zhenghan, GUO Nan. New developments of mechanics and application for unsaturated soils and special soils[J]. Rock and Soil Mechanics, 2019, 40(1): 1-54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901002.htm
    [2]
    王理想, 袁晓铭. 分散土工程破坏机理与治理研究现状[J]. 自然灾害学报, 2021, 30(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH202101001.htm

    WANG Lixiang, YUAN Xiaoming. Research status of failure mechanism and treatment measures of dispersive soil engineering[J]. Journal of Natural Disasters, 2021, 30(1): 1-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH202101001.htm
    [3]
    王观平. 黑龙江省南部引嫩工程分散性黏土的研究与处理措施[J]. 水利水电技术, 1992, 23(3): 18-22. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ199203004.htm

    WANG Guanping. Study and treatment measures of dispersed clay in the south of Heilongjiang Province[J]. Water Resources and Hydropower Engineering, 1992, 23(3): 18-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ199203004.htm
    [4]
    刘松玉, 李晨. 氧化镁活性对碳化固化效果影响研究[J]. 岩土工程学报, 2015, 37(1): 148-155. doi: 10.11779/CJGE201501018

    LIU Songyu, LI Chen. Influence of MgO activity on stabilization efficiency of carbonated mixing method[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 148-155. (in Chinese) doi: 10.11779/CJGE201501018
    [5]
    CHEN R P, DRNEVICH V P, DAITA R K. Short-term electrical conductivity and strength development of lime kiln dust modified soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(4): 590-594. doi: 10.1061/(ASCE)1090-0241(2009)135:4(590)
    [6]
    ROLLINGS R S, BURKES J P, ROLLINGS M P. Sulfate attack on cement-stabilized sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(5): 364-372. doi: 10.1061/(ASCE)1090-0241(1999)125:5(364)
    [7]
    张涛, 刘松玉, 蔡国军, 等. 木质素改良粉土热学与力学特性相关性试验研究[J]. 岩土工程学报, 2015, 37(10): 1876-1885. doi: 10.11779/CJGE201510016

    ZHANG Tao, LIU Songyu, CAI Guojun, et al. Experimental study on relationship between thermal and mechanical properties of treated silt by lignin[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1876-1885. (in Chinese) doi: 10.11779/CJGE201510016
    [8]
    路瑶, 魏贤勇, 宗志敏, 等. 木质素的结构研究与应用[J]. 化学进展, 2013, 25(5): 838-858. https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ201305021.htm

    LU Yao, WEI Xianyong, ZONG Zhimin, et al. Structural investigation and application of lignins[J]. Progress in Chemistry, 2013, 25(5): 838-858. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ201305021.htm
    [9]
    贺智强, 樊恒辉, 王军强, 等. 木质素加固黄土的工程性能试验研究[J]. 岩土力学, 2017, 38(3): 731-739. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201703015.htm

    HE Zhiqiang, FAN Henghui, WANG Junqiang, et al. Experimental study of engineering properties of loess reinforced by lignosulfonate[J]. Rock and Soil Mechanics, 2017, 38(3): 731-739. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201703015.htm
    [10]
    SHULGA G, REKNER F, VARSLAVAN J. SW—soil and water[J]. Journal of Agricultural Engineering Research, 2001, 78(3): 309-316. doi: 10.1006/jaer.2000.0599
    [11]
    VINOD J S, INDRARATNA B, MAHAMUD M A A. Stabilisation of an erodible soil using a chemical admixture[J]. Proceedings of the Institution of Civil Engineers - Ground Improvement, 2010, 163(1): 43-51. doi: 10.1680/grim.2010.163.1.43
    [12]
    TINGLE J S, SANTONI R L. Stabilization of clay soils with nontraditional additives[J]. Transportation Research Record: Journal of the Transportation Research Board, 2003, 1819(1): 72-84. http://www.onacademic.com/detail/journal_1000038524224110_e257.html
    [13]
    CEYLAN H, GOPALAKRISHNAN K, KIM S. Soil stabilization with bioenergy coproduct[J]. Transportation Research Record: Journal of the Transportation Research Board, 2010, 2186(1): 130-137. http://core.ac.uk/download/pdf/38934604.pdf
    [14]
    ALAZIGHA D P, INDRARATNA B, VINOD J S, et al. The swelling behaviour of lignosulfonate-treated expansive soil[J]. Proceedings of the Institution of Civil Engineers - Ground Improvement, 2016, 169(3): 182-193. http://ro.uow.edu.au/cgi/viewcontent.cgi?article=6830&context=eispapers
    [15]
    侯鑫, 马巍, 李国玉, 等. 木质素磺酸盐对兰州黄土力学性质的影响[J]. 岩土力学, 2017, 38(增刊2): 18-26. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S2003.htm

    HOU Xin, MA Wei, LI Guoyu, et al. Influence of lignosulfonate on mechanical properties of Lanzhou loess[J]. Rock and Soil Mechanics, 2017, 38(S2): 18-26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S2003.htm
    [16]
    姬胜戈, 王宝仲, 杨秀娟, 等. 木质素磺酸钙改性分散性土的试验研究[J]. 岩土力学, 2021, 42(9): 2405-2415. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202109008.htm

    JI Shengge, WANG Baozhong, YANG Xiujuan, et al. Experimental study of dispersive clay modified by calcium lignosulfonate[J]. Rock and Soil Mechanics, 2021, 42(9): 2405-2415. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202109008.htm
    [17]
    周健民, 沈仁芳. 土壤学大辞典[M]. 北京: 科学出版社, 2013.

    ZHOU Jianmin, SHEN Renfang. Dictionary of Soil Science[M]. Beijing: Science Press, 2013. (in Chinese)
    [18]
    李诚. 木质素磺酸钙减水剂的改性研究[D]. 济南: 济南大学, 2007.

    LI Cheng. The Modification of Calcium Lignosulfonate as Water Reducer[D]. Jinan: University of Jinan, 2007. (in Chinese)
    [19]
    SUN X F, JING Z, FOWLER P, et al. Structural characterization and isolation of lignin and hemicelluloses from barley straw[J]. Industrial Crops & Products, 2011, 33(3): 588-598. http://www.researchgate.net/profile/Zhanxin_Jing/publication/251618094_Structural_characterization_and_isolation_of_lignin_and_hemicelluloses_from_barley_straw/links/5631d76608ae506cea679c9a.pdf
    [20]
    中华人民共和国水利部. 土工试验方法标准: GB/T 50123—2019[S]. 2019.

    Ministry of Water Resources of the People's Republic of China. Standard for Geotechnical Test Methods: GB/T 50123—2019[S]. 2019. (in Chinese)
    [21]
    The American Society for Testing and Material. D4647—20 Standard Test Method for Dispersive Characteristics of Clay Soil by the Pinhole Test[S]. West Conshohocken: ASTM International, 2020.
    [22]
    The American Society for Testing and Material. D4221-18 Standard Test Method for Dispersive Characteristics of Clay Soil by Double Hydromoter[S]. West Conshohocken: ASTM International, 2018.
    [23]
    樊恒辉, 赵高文, 路立娜, 等. 分散性土的综合判别准则与针孔试验方法的改进[J]. 水力发电学报, 2013, 32(1): 248-253, 262. https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB201301041.htm

    FAN Henghui, ZHAO Gaowen, LU Lina, et al. Comprehensive criterion of dispersive soil and improvement of pinhole test[J]. Journal of Hydroelectric Engineering, 2013, 32(1): 248-253, 262. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB201301041.htm
    [24]
    冯杰, 郝振纯. 分形理论在描述土壤大孔隙结构中的应用研究[J]. 地球科学进展, 2004, 19(增刊1): 270-274. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ2004S1054.htm

    FENG Jie, HAO Zhenchun. Study on application of fractal theory to describe soil macropore structure[J]. Advance in Earth Sciences, 2004, 19(S1): 270-274. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ2004S1054.htm
    [25]
    冯杰, 郝振纯. CT扫描确定土壤大孔隙分布[J]. 水科学进展, 2002, 13(5): 611-617. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ200205013.htm

    FENG Jie, HAO Zhenchun. Distribution of soil macropores characterized by CT[J]. Advances in Water Science, 2002, 13(5): 611-617. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ200205013.htm
    [26]
    LIU C, SHI B, ZHOU J, et al. Quantification and characterization of microporosity by image processing, geometric measurement and statistical methods: application on SEM images of clay materials[J]. Applied Clay Science, 2011, 54(1): 97-106. http://www.sciencedirect.com/science/article/pii/S0169131711002754
    [27]
    SOROUSHIAN P, ELZAFRANEY M. Morphological operations, planar mathematical formulations, and stereological interpretations for automated image analysis of concrete microstructure[J]. Cement and Concrete Composites, 2005, 27(7/8): 823-833. http://www.sciencedirect.com/science/article/pii/S0958946505000491
    [28]
    LIU C, TANG C S, SHI B, et al. Automatic quantification of crack patterns by image processing[J]. Computers & Geosciences, 2013, 57: 77-80. http://www.sciencedirect.com/science/article/pii/s0098300413001088
    [29]
    唐朝生, 施斌, 王宝军. 基于SEM土体微观结构研究中的影响因素分析[J]. 岩土工程学报, 2008, 30(4): 560-565. http://www.cgejournal.com/cn/article/id/12824

    TANG Chaosheng, SHI Bin, WANG Baojun. Factors affecting analysis of soil microstructure using SEM[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(4): 560-565. (in Chinese) http://www.cgejournal.com/cn/article/id/12824
    [30]
    SCHAUMANN G E. Proton nuclear magnetic resonance (NMR) relaxometry in soil science[M]// Encyclopedia of Agrophysics. Dordrecht: Springer, 2011: 667-667.
    [31]
    HINEDI Z R, CHANG A C, ANDERSON M A, et al. Quantification of microporosity by nuclear magnetic resonance relaxation of water imbibed in porous media[J]. Water Resources Research, 1997, 33(12): 2697-2704. http://eurekamag.com/pdf/003/003248166.pdf
    [32]
    MILIA F, FARDIS M, PAPAVASSILIOU G, et al. NMR in porous materials[J]. Magnetic Resonance Imaging, 1998, 16(5/6): 677-678.
    [33]
    ALNAIMI S M, STRANGE J H, SMITH E G. The characterization of porous solids by NMR[J]. Magnetic Resonance Imaging, 1994, 12(2): 257-259. http://www.onacademic.com/detail/journal_1000034036248710_c8af.html
  • Cited by

    Periodical cited type(4)

    1. 魏康林,朱禹,罗业华,严晓周,胥岚月,李洪斌,曾勇. 地铁盾构隧道超小净距地段中隔墙加固效果分析. 岩土工程技术. 2025(01): 63-71 .
    2. 阳军生,汤冲,柏署,谢亦朋,李雨哲,杨磊. 不等跨十车道四连拱隧道施工全过程支护结构受力特征现场测试研究. 岩土工程学报. 2024(10): 2030-2040 . 本站查看
    3. 李志厚,王安民,陈树汪,陈俊武,邓志云. 无中导连拱隧道受力机理及对策研究. 地下空间与工程学报. 2024(06): 1969-1978 .
    4. 陈扬勋,肖明清,薛光桥,张迪. 大直径盾构隧道预制中隔墙振动响应特性研究. 隧道建设(中英文). 2024(12): 2376-2384 .

    Other cited types(0)

Catalog

    Article views (384) PDF downloads (171) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return