• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YING Sai, XIA Xiaozhou, WEN Tao, ZHOU Fengxi, CAO Yapeng, LI Guoyu, ZHANG Qing. Experimental study on freezing characteristic curve of soils based on nuclear magnetic resonance technology[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1437-1444. DOI: 10.11779/CJGE20230301
Citation: YING Sai, XIA Xiaozhou, WEN Tao, ZHOU Fengxi, CAO Yapeng, LI Guoyu, ZHANG Qing. Experimental study on freezing characteristic curve of soils based on nuclear magnetic resonance technology[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1437-1444. DOI: 10.11779/CJGE20230301

Experimental study on freezing characteristic curve of soils based on nuclear magnetic resonance technology

More Information
  • Received Date: April 09, 2023
  • Available Online: November 01, 2023
  • The freezing characteristic curve describes the variation of unfrozen water content with temperature in soils, and it is of engineering value to provide a model for calculating freezing characteristic curves suitable for different soil types. The freezing characteristic curves of six kinds of soils are tested by using the nuclear magnetic resonance technology, and a method for determining parameters of Michalowski model describing the freezing characteristic curves of soils is given. The influences of the initial water content and soil properties on the freezing characteristic curve are analyzed, and the model is improved by using the characteristics of Michalowski model parameters. The study shows that the freezing characteristic curve is independent of the initial water content, and that of the soils with different initial water contents is the same during the freezing process. Without considering the influences of temperature, the model parameter wa is approximately equal to the maximum of bound water content in the soils, which can be used as an important index parameter to analyze and evaluate the characteristics of clay. The practical value is improved by the single-parameter Michalowski model as it performs well in predicting unfrozen water content with less model complexity, but the applicability of the model needs to be verified.
  • [1]
    徐学祖, 王家澄, 张立新. 冻土物理学[M]. 北京: 科学出版社, 2001.

    XU Xuezu, WANG Jiacheng, ZHANG Lixin. Frozen Soil Physics[M]. Beijing: Science Press, 2001. (in Chinese)
    [2]
    孔超, 王美艳, 史学正, 等. 基于低场核磁技术研究土壤持水性能与孔隙特征[J]. 土壤学报, 2016, 53(5): 1130-1137. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201605005.htm

    KONG Chao, WANG Meiyan, SHI Xuezheng, et al. Study on water holding capacity and pore characteristics of soils based on LF-NMR[J]. Acta Pedologica Sinica, 2016, 53(5): 1130-1137. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201605005.htm
    [3]
    田慧会, 韦昌富, 魏厚振, 等. 压实黏质砂土脱湿过程影响机制的核磁共振分析[J]. 岩土力学, 2014, 35(8): 2129-2136. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201408001.htm

    TIAN Huihui, WEI Changfu, WEI Houzhen, et al. A NMR-based analysis of drying processes of compacted clayey sands[J]. Rock and Soil Mechanics, 2014, 35(8): 2129-2136. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201408001.htm
    [4]
    叶万军, 吴云涛, 杨更社, 等. 干湿循环作用下古土壤细微观结构及宏观力学性能变化规律研究[J]. 岩石力学与工程学报, 2019, 38(10): 2126-2137. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201910018.htm

    YE Wanjun, WU Yuntao, YANG Gengshe, et al. Study on microstructure and macro-mechanical properties of paleosol under dry-wet cycles[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(10): 2126-2137. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201910018.htm
    [5]
    谭龙, 韦昌富, 田慧会, 等. 冻土未冻水含量的低场核磁共振试验研究[J]. 岩土力学, 2015, 36(6): 1566-1572. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201506006.htm

    TAN Long, WEI Changfu, TIAN Huihui, et al. Experimental study of unfrozen water content of frozen soils by low-field nuclear magnetic resonance[J]. Rock and Soil Mechanics, 2015, 36(6): 1566-1572. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201506006.htm
    [6]
    周家作, 谭龙, 韦昌富, 等. 土的冻结温度与过冷温度试验研究[J]. 岩土力学, 2015, 36(3): 777-785. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201503027.htm

    ZHOU Jiazuo, TAN Long, WEI Changfu, et al. Experimental research on freezing temperature and super-cooling temperature of soil[J]. Rock and Soil Mechanics, 2015, 36(3): 777-785. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201503027.htm
    [7]
    孔令明, 梁珂, 彭丽云. 比表面积对土冻结特征曲线影响的试验研究[J]. 岩土力学, 2021, 42(7): 1883-1893. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202107013.htm

    KONG Lingming, LIANG Ke, PENG Liyun. Experimental study on the influence of specific surface area on the soil-freezing characteristic curve[J]. Rock and Soil Mechanics, 2021, 42(7): 1883-1893. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202107013.htm
    [8]
    孟祥传, 周家作, 韦昌富, 等. 盐分对土的冻结温度及未冻水含量的影响研究[J]. 岩土力学, 2020, 41(3): 952-960. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202003026.htm

    MENG Xiangchuan, ZHOU Jiazuo, WEI Changfu, et al. Effects of salinity on soil freezing temperature and unfrozen water content[J]. Rock and Soil Mechanics, 2020, 41(3): 952-960. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202003026.htm
    [9]
    万旭升, 赖远明, 张明义, 等. 土中未冻含水率与温度关系研究[J]. 铁道学报, 2018, 40(1): 123-129.

    WAN Xusheng, LAI Yuanming, ZHANG Mingyi, et al. Research on relationship between unfrozen water content in soil and temperature[J]. Journal of the China Railway Society, 2018, 40(1): 123-129. (in Chinese)
    [10]
    TSYTOVICH N A. The Mechanics of Frozen Ground[M]. Washington D C: Scripta Book Co, 1975.
    [11]
    MICHALOWSKI R L. A constitutive model of saturated soils for frost heave simulations[J]. Cold Regions Science and Technology, 1993, 22(1): 47-63. doi: 10.1016/0165-232X(93)90045-A
    [12]
    MICHALOWSKI R L, ZHU M. Frost heave modelling using porosity rate function[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(8): 703-722. doi: 10.1002/nag.497
    [13]
    YONG R. Soil suction effects on partial soil freezing[J]. Highway Res Rec, 1965, 68: 31-42.
    [14]
    ANDERSON D, MORGENSTERN N. Physics, chemistry, and mechanics of frozen ground. A reviewconference[C]// North American contribution to the 2nd Internat. Conference. Permafrost, 1974.
    [15]
    WEN Z, MA W, FENG W J, et al. Experimental study on unfrozen water content and soil matric potential of Qinghai-Tibetan silty clay[J]. Environmental Earth Sciences, 2012, 66(5): 1467-1476. doi: 10.1007/s12665-011-1386-0
    [16]
    BAI R Q, LAI Y M, ZHANG M Y, et al. Theory and application of a novel soil freezing characteristic curve[J]. Applied Thermal Engineering, 2018, 129: 1106-1114. doi: 10.1016/j.applthermaleng.2017.10.121
    [17]
    SPAANS E J A, BAKER J M. The soil freezing characteristic: its measurement and similarity to the soil moisture characteristic[J]. Soil Science Society of America Journal, 1996, 60(1): 13-19. doi: 10.2136/sssaj1996.03615995006000010005x
    [18]
    SUZUKI S. Dependence of unfrozen water content in unsaturated frozen clay soil on initial soil moisture content[J]. Soil Science and Plant Nutrition, 2004, 50(4): 603-606. doi: 10.1080/00380768.2004.10408518
    [19]
    冷毅飞, 张喜发, 杨凤学, 等. 冻土未冻水含量的量热法试验研究[J]. 岩土力学, 2010, 31(12): 3758-3764. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201012012.htm

    LENG Yifei, ZHANG Xifa, YANG Fengxue, et al. Experimental research on unfrozen water content of frozen soils by calorimetry[J]. Rock and Soil Mechanics, 2010, 31(12): 3758-3764. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201012012.htm
    [20]
    李东阳. 冻土未冻水含量测试新方法的试验和理论研究[D]. 北京: 中国矿业大学(北京), 2011.

    LI Dongyang. The Experiment and Theoretical Research on a New Test Method to Measure Unfrozen Water Content in Frozen Soil[D]. Beijing: China University of Mining & Technology, Beijing, 2011. (in Chinese)
    [21]
    WATANABE K, WAKE T. Measurement of unfrozen water content and relative permittivity of frozen unsaturated soil using NMR and TDR[J]. Cold Regions Science and Technology, 2009, 59(1): 34-41. doi: 10.1016/j.coldregions.2009.05.011
    [22]
    KURYLYK B L, WATANABE K. The mathematical representation of freezing and thawing processes in variably-saturated, non-deformable soils[J]. Advances in Water Resources, 2013, 60: 160-177. doi: 10.1016/j.advwatres.2013.07.016
    [23]
    应赛, 周凤玺, 文桃, 等. 盐渍土冻结过程中的特征温度研究[J]. 岩土工程学报, 2021, 43(1): 53-61. doi: 10.11779/CJGE202101006

    YING Sai, ZHOU Fengxi, WEN Tao, et al. Characteristic temperatures of saline soil during freezing[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 53-61. (in Chinese) doi: 10.11779/CJGE202101006
    [24]
    田慧会, 韦昌富. 基于核磁共振技术的土体吸附水含量测试与分析[J]. 中国科学: 技术科学, 2014, 44(3): 295-305. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201403009.htm

    TIAN Huihui, WEI Changfu. A NMR-based testing and analysis of adsorbed water content[J]. Scientia Sinica (Technologica), 2014, 44(3): 295-305. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201403009.htm
    [25]
    CHEN Y Q, ZHOU Z F, WANG J G, et al. Quantification and division of unfrozen water content during the freezing process and the influence of soil properties by low-field nuclear magnetic resonance[J]. Journal of Hydrology, 2021, 602: 126719. doi: 10.1016/j.jhydrol.2021.126719
  • Related Articles

    [1]FENG Huai-ping, MA De-liang, WANG Zhi-peng, CHANG Jian-mei. Measurement of resistivity of unsaturated soils using van der Pauw method[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 690-696. DOI: 10.11779/CJGE201704014
    [2]LIU Song-yu, BIAN Han-liang, CAI Guo-jun, CHU Ya. Influences of water and oil two-phase on electrical resistivity of oil-contaminated soils[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 170-177. DOI: 10.11779/CJGE201701016
    [3]LIU Ting-fa, NIE Yan-xia, HU Li-ming, ZHOU Qi-you, WEN Qing-bo. Model tests on moisture migration based on high-density electrical resistivity tomography method[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 761-768. DOI: 10.11779/CJGE201604023
    [4]ZHAO Yan-ru, CHEN Xiang-sheng, HUANG Li-ping, ZHOU Zhong-hua, XIE Qiang. Experimental study on electrical resistivity of municipal solid waste[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12): 2205-2216. DOI: 10.11779/CJGE201512010
    [5]GUO Xiu-jun, WU Shui-juan, MA Yuan-yuan. Quantitative investigation of landfill-leachate contaminated sand soil with electrical resistivity method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2066-2071.
    [6]LIU Bin, NIE Li-chao, LI Shu-cai, LI Li-ping, SONG Jie, LIU Zheng-yu. Numerical forward and model tests of water inrush real-time monitoring in tunnels based on electrical resistivity tomography method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2026-2035.
    [7]Numerical modeling of direct current electrical resistivity with 3D FEM based on PCG algorithm[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1846-1855.
    [8]ZHA Fusheng, LIU Songyu, DU Yanjun, CUI Kerui. Quantitative research on microstructures of expansive soils during swelling using electrical resistivity measurements[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(12): 1832-1839.
    [9]HAN Lihua, LIU Songyu, DU Yanjun. New method for testing contaminated soil——electrical resistivity method[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 1028-1032.
    [10]SUN Yue. Numerical analysis for three-dimensional resistivity model by using finite element/infinite element methods[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 733-737.
  • Cited by

    Periodical cited type(11)

    1. 吕庆强,蔡伟. 某库区移民场地条件变化后的砂土液化研究. 地质灾害与环境保护. 2024(01): 70-73 .
    2. 李雨润,范浩然,闫志晓,辛晓梅. 干砂与饱和砂土场地直斜群桩横向动力响应特性对比研究. 自然灾害学报. 2024(03): 202-216 .
    3. 杨洋,魏怡童. 基于分类树的液化概率等级评估新方法. 岩土力学. 2024(07): 2175-2186+2194 .
    4. 李萍萍,赵少飞,鲍俊文,刘子源. 基于标贯试验的含细粒砂土液化概率判别新模型. 防灾减灾工程学报. 2024(05): 1133-1139 .
    5. 袁近远,苏安双,陈龙伟,许成顺,王淼,袁晓铭,张思宇. 基于剪切波速的砾性土液化概率计算的中国方法. 岩土力学. 2024(11): 3378-3387+3415 .
    6. 袁近远,王兰民,汪云龙,袁晓铭. 不同设防水准下场地液化震害风险差异性研究. 岩石力学与工程学报. 2023(01): 246-260 .
    7. 王维铭,陈龙伟,郭婷婷,汪云龙,凌贤长. 基于中国砂土液化数据库的标准贯入试验液化判别方法研究. 岩土力学. 2023(01): 279-288 .
    8. 郝少雷,张兵,徐世光,李岳峰,陈梦瑞,邓立雄,郭薇. 基于SPT-APD-DDA的砂土液化评价方法研究. 地震工程学报. 2023(04): 877-886 .
    9. 李原,王睿,张建民. 地下水位上升对北京土层地震液化的影响. 土木工程学报. 2023(S2): 95-103 .
    10. 赵志江. 泵站基础液化判别方法分析. 水利技术监督. 2023(12): 217-221 .
    11. 邱香,袁晓铭,李鑫洋,汪云龙,李兆焱,张思宇. 不同地区数据下CPT液化判别公式的差异性与互用可行性研究. 土木工程学报. 2022(S1): 241-249 .

    Other cited types(6)

Catalog

    Article views PDF downloads Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return