Citation: | YING Sai, XIA Xiaozhou, WEN Tao, ZHOU Fengxi, CAO Yapeng, LI Guoyu, ZHANG Qing. Experimental study on freezing characteristic curve of soils based on nuclear magnetic resonance technology[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1437-1444. DOI: 10.11779/CJGE20230301 |
[1] |
徐学祖, 王家澄, 张立新. 冻土物理学[M]. 北京: 科学出版社, 2001.
XU Xuezu, WANG Jiacheng, ZHANG Lixin. Frozen Soil Physics[M]. Beijing: Science Press, 2001. (in Chinese)
|
[2] |
孔超, 王美艳, 史学正, 等. 基于低场核磁技术研究土壤持水性能与孔隙特征[J]. 土壤学报, 2016, 53(5): 1130-1137. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201605005.htm
KONG Chao, WANG Meiyan, SHI Xuezheng, et al. Study on water holding capacity and pore characteristics of soils based on LF-NMR[J]. Acta Pedologica Sinica, 2016, 53(5): 1130-1137. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201605005.htm
|
[3] |
田慧会, 韦昌富, 魏厚振, 等. 压实黏质砂土脱湿过程影响机制的核磁共振分析[J]. 岩土力学, 2014, 35(8): 2129-2136. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201408001.htm
TIAN Huihui, WEI Changfu, WEI Houzhen, et al. A NMR-based analysis of drying processes of compacted clayey sands[J]. Rock and Soil Mechanics, 2014, 35(8): 2129-2136. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201408001.htm
|
[4] |
叶万军, 吴云涛, 杨更社, 等. 干湿循环作用下古土壤细微观结构及宏观力学性能变化规律研究[J]. 岩石力学与工程学报, 2019, 38(10): 2126-2137. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201910018.htm
YE Wanjun, WU Yuntao, YANG Gengshe, et al. Study on microstructure and macro-mechanical properties of paleosol under dry-wet cycles[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(10): 2126-2137. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201910018.htm
|
[5] |
谭龙, 韦昌富, 田慧会, 等. 冻土未冻水含量的低场核磁共振试验研究[J]. 岩土力学, 2015, 36(6): 1566-1572. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201506006.htm
TAN Long, WEI Changfu, TIAN Huihui, et al. Experimental study of unfrozen water content of frozen soils by low-field nuclear magnetic resonance[J]. Rock and Soil Mechanics, 2015, 36(6): 1566-1572. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201506006.htm
|
[6] |
周家作, 谭龙, 韦昌富, 等. 土的冻结温度与过冷温度试验研究[J]. 岩土力学, 2015, 36(3): 777-785. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201503027.htm
ZHOU Jiazuo, TAN Long, WEI Changfu, et al. Experimental research on freezing temperature and super-cooling temperature of soil[J]. Rock and Soil Mechanics, 2015, 36(3): 777-785. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201503027.htm
|
[7] |
孔令明, 梁珂, 彭丽云. 比表面积对土冻结特征曲线影响的试验研究[J]. 岩土力学, 2021, 42(7): 1883-1893. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202107013.htm
KONG Lingming, LIANG Ke, PENG Liyun. Experimental study on the influence of specific surface area on the soil-freezing characteristic curve[J]. Rock and Soil Mechanics, 2021, 42(7): 1883-1893. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202107013.htm
|
[8] |
孟祥传, 周家作, 韦昌富, 等. 盐分对土的冻结温度及未冻水含量的影响研究[J]. 岩土力学, 2020, 41(3): 952-960. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202003026.htm
MENG Xiangchuan, ZHOU Jiazuo, WEI Changfu, et al. Effects of salinity on soil freezing temperature and unfrozen water content[J]. Rock and Soil Mechanics, 2020, 41(3): 952-960. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202003026.htm
|
[9] |
万旭升, 赖远明, 张明义, 等. 土中未冻含水率与温度关系研究[J]. 铁道学报, 2018, 40(1): 123-129.
WAN Xusheng, LAI Yuanming, ZHANG Mingyi, et al. Research on relationship between unfrozen water content in soil and temperature[J]. Journal of the China Railway Society, 2018, 40(1): 123-129. (in Chinese)
|
[10] |
TSYTOVICH N A. The Mechanics of Frozen Ground[M]. Washington D C: Scripta Book Co, 1975.
|
[11] |
MICHALOWSKI R L. A constitutive model of saturated soils for frost heave simulations[J]. Cold Regions Science and Technology, 1993, 22(1): 47-63. doi: 10.1016/0165-232X(93)90045-A
|
[12] |
MICHALOWSKI R L, ZHU M. Frost heave modelling using porosity rate function[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(8): 703-722. doi: 10.1002/nag.497
|
[13] |
YONG R. Soil suction effects on partial soil freezing[J]. Highway Res Rec, 1965, 68: 31-42.
|
[14] |
ANDERSON D, MORGENSTERN N. Physics, chemistry, and mechanics of frozen ground. A reviewconference[C]// North American contribution to the 2nd Internat. Conference. Permafrost, 1974.
|
[15] |
WEN Z, MA W, FENG W J, et al. Experimental study on unfrozen water content and soil matric potential of Qinghai-Tibetan silty clay[J]. Environmental Earth Sciences, 2012, 66(5): 1467-1476. doi: 10.1007/s12665-011-1386-0
|
[16] |
BAI R Q, LAI Y M, ZHANG M Y, et al. Theory and application of a novel soil freezing characteristic curve[J]. Applied Thermal Engineering, 2018, 129: 1106-1114. doi: 10.1016/j.applthermaleng.2017.10.121
|
[17] |
SPAANS E J A, BAKER J M. The soil freezing characteristic: its measurement and similarity to the soil moisture characteristic[J]. Soil Science Society of America Journal, 1996, 60(1): 13-19. doi: 10.2136/sssaj1996.03615995006000010005x
|
[18] |
SUZUKI S. Dependence of unfrozen water content in unsaturated frozen clay soil on initial soil moisture content[J]. Soil Science and Plant Nutrition, 2004, 50(4): 603-606. doi: 10.1080/00380768.2004.10408518
|
[19] |
冷毅飞, 张喜发, 杨凤学, 等. 冻土未冻水含量的量热法试验研究[J]. 岩土力学, 2010, 31(12): 3758-3764. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201012012.htm
LENG Yifei, ZHANG Xifa, YANG Fengxue, et al. Experimental research on unfrozen water content of frozen soils by calorimetry[J]. Rock and Soil Mechanics, 2010, 31(12): 3758-3764. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201012012.htm
|
[20] |
李东阳. 冻土未冻水含量测试新方法的试验和理论研究[D]. 北京: 中国矿业大学(北京), 2011.
LI Dongyang. The Experiment and Theoretical Research on a New Test Method to Measure Unfrozen Water Content in Frozen Soil[D]. Beijing: China University of Mining & Technology, Beijing, 2011. (in Chinese)
|
[21] |
WATANABE K, WAKE T. Measurement of unfrozen water content and relative permittivity of frozen unsaturated soil using NMR and TDR[J]. Cold Regions Science and Technology, 2009, 59(1): 34-41. doi: 10.1016/j.coldregions.2009.05.011
|
[22] |
KURYLYK B L, WATANABE K. The mathematical representation of freezing and thawing processes in variably-saturated, non-deformable soils[J]. Advances in Water Resources, 2013, 60: 160-177. doi: 10.1016/j.advwatres.2013.07.016
|
[23] |
应赛, 周凤玺, 文桃, 等. 盐渍土冻结过程中的特征温度研究[J]. 岩土工程学报, 2021, 43(1): 53-61. doi: 10.11779/CJGE202101006
YING Sai, ZHOU Fengxi, WEN Tao, et al. Characteristic temperatures of saline soil during freezing[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 53-61. (in Chinese) doi: 10.11779/CJGE202101006
|
[24] |
田慧会, 韦昌富. 基于核磁共振技术的土体吸附水含量测试与分析[J]. 中国科学: 技术科学, 2014, 44(3): 295-305. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201403009.htm
TIAN Huihui, WEI Changfu. A NMR-based testing and analysis of adsorbed water content[J]. Scientia Sinica (Technologica), 2014, 44(3): 295-305. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201403009.htm
|
[25] |
CHEN Y Q, ZHOU Z F, WANG J G, et al. Quantification and division of unfrozen water content during the freezing process and the influence of soil properties by low-field nuclear magnetic resonance[J]. Journal of Hydrology, 2021, 602: 126719. doi: 10.1016/j.jhydrol.2021.126719
|
[1] | FENG Huai-ping, MA De-liang, WANG Zhi-peng, CHANG Jian-mei. Measurement of resistivity of unsaturated soils using van der Pauw method[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 690-696. DOI: 10.11779/CJGE201704014 |
[2] | LIU Song-yu, BIAN Han-liang, CAI Guo-jun, CHU Ya. Influences of water and oil two-phase on electrical resistivity of oil-contaminated soils[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 170-177. DOI: 10.11779/CJGE201701016 |
[3] | LIU Ting-fa, NIE Yan-xia, HU Li-ming, ZHOU Qi-you, WEN Qing-bo. Model tests on moisture migration based on high-density electrical resistivity tomography method[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 761-768. DOI: 10.11779/CJGE201604023 |
[4] | ZHAO Yan-ru, CHEN Xiang-sheng, HUANG Li-ping, ZHOU Zhong-hua, XIE Qiang. Experimental study on electrical resistivity of municipal solid waste[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12): 2205-2216. DOI: 10.11779/CJGE201512010 |
[5] | GUO Xiu-jun, WU Shui-juan, MA Yuan-yuan. Quantitative investigation of landfill-leachate contaminated sand soil with electrical resistivity method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2066-2071. |
[6] | LIU Bin, NIE Li-chao, LI Shu-cai, LI Li-ping, SONG Jie, LIU Zheng-yu. Numerical forward and model tests of water inrush real-time monitoring in tunnels based on electrical resistivity tomography method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2026-2035. |
[7] | Numerical modeling of direct current electrical resistivity with 3D FEM based on PCG algorithm[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1846-1855. |
[8] | ZHA Fusheng, LIU Songyu, DU Yanjun, CUI Kerui. Quantitative research on microstructures of expansive soils during swelling using electrical resistivity measurements[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(12): 1832-1839. |
[9] | HAN Lihua, LIU Songyu, DU Yanjun. New method for testing contaminated soil——electrical resistivity method[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 1028-1032. |
[10] | SUN Yue. Numerical analysis for three-dimensional resistivity model by using finite element/infinite element methods[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 733-737. |