• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
AN Ai-jun, LIAO Jing-yun. Modified mesostructure of Standard Gange Railway expansive soils of Mombasa- Nairobi based on nuclear magnetic resonance and scanning electron microscope[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 152-156. DOI: 10.11779/CJGE2018S2031
Citation: AN Ai-jun, LIAO Jing-yun. Modified mesostructure of Standard Gange Railway expansive soils of Mombasa- Nairobi based on nuclear magnetic resonance and scanning electron microscope[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 152-156. DOI: 10.11779/CJGE2018S2031

Modified mesostructure of Standard Gange Railway expansive soils of Mombasa- Nairobi based on nuclear magnetic resonance and scanning electron microscope

More Information
  • Received Date: July 21, 2018
  • Published Date: October 29, 2018
  • The pore structure and distribution characteristics have important influences on the physical and mechanical properties of expansive soils. The pore characteristics of the expansive soils before and after improvement treatment of lime-volcanic ash are analyzed using the NMR technology to obtain their change of pores and distribution laws. The change of internal cementation of the expansive soils before and after modification is analyzed by means of the scanning electron microscopy. The experimental results show that the number of pores in the range of 0~0.1 μm in diameter is significantly reduced, that in the range of 0.1~4 μm in diameter increases, and that in diameter more than 4 μm decreases as a whole. After modification of the expansive soils, a mixed structure with honeycomb structure, skeleton structure and spongy structure is formed, which improves the compactness of soil particles, reduces the connectivity of pores, and effectively inhibites the swelling and shrinkage characteristics of the expansive soils.
  • [1]
    城乡建设环境保护部. 膨胀土地区建筑技术规范[M]. 北京: 中国计划出版社, 1989.
    (Technical code for buildings in expansive soil regions[M]Technical code for buildings in expansive soil regions[M]. Beijing: China Planning Press, 1989. (in Chinese))
    [2]
    唐朝生, 施斌, 刘春. 膨胀土收缩开裂特性研究[J]. 工程地质学报, 2012, 20(5): 663-73.
    (TANG Chao-sheng, SHI Bin, LIU Chun.Study on desiccation cracking behavior of expansive soil[J]. Engineering Geology Journal, 2012, 20(5): 663-673. (in Chinese))
    [3]
    TAYLOR R B, DAVID A K, JR T A J, et al. Principles and applications[M]. New York: Springer, 1999.
    [4]
    VOLOKITIN Y, LOOYESTIJN W J, SLIJKERMAN W F J, et al. A practical approach to obtain primary drainage capillary pressure curves from NMR core and log data[J]. Petrophysics, 2001, 42(4):
    [5]
    李天降, 李子丰, 赵彦超, 等. 核磁共振与压汞法的孔隙结构一致性研究[J]. 天然气工业, 2006, 26(10): 57-59.
    (LI Tian-xiang, LI Zi-feng, ZHAO Yan-chao, et al.Consistency of pore structures between NMR and mercury intrusion method[J]. Natural Gas Industry, 2006, 26(10): 57-59. (in Chinese))
    [6]
    周科平, 李杰林, 许玉娟, 等. 基于核磁共振技术的岩石孔隙结构特征测定[J]. 中南大学学报(自然科学版), 2012, 43(12): 4796-4800.
    (ZHOU Ke-ping, LI Jie-lin, XU Yu-juan, et al.Measurement of rock pore structure based on NMR technology[J]. Journal of Central South University (Science and Technology), 2012, 43(12): 4796-4800. (in Chinese))
    [7]
    田慧会, 韦昌富. 基于核磁共振技术的土体吸附水含量测试与分析[J]. 中国科学 (技术科学), 2014, 44(3): 295-305.
    (TIAN Hui-hui, WEI Chang-fu.A NMR-based testing and analysis of adsorbed water content[J]. Scientia Sinica Technologica, 2014, 44(3): 295-305. (in Chinese))
    [8]
    李彰明, 曾文秀, 高美连, 等. 典型荷载条件下淤泥孔径分布特征核磁共振试验研究[J]. 物理学报, 2014, 63(5): 366-372.
    (LI Zhang-ming, ZENG Wen-xiu, GAO Mei-lian, et al.Nuclear magnetic resonance experimental study on the characteristics of pore-size distribution in muck under several typical loading cases[J]. Acta Physica Sinica, 2014, 63(5): 366-372. (in Chinese))
    [9]
    TOVEY N K.Quantitative analysis of electron micrographs of soil structure[C]// International Symposium on Soil Structure, 1973.
    [10]
    施斌. 黏性土微观结构SEM图象的定量研究[J]. 中国科学, 1995, 6: 666-672.
    (SHI Bin.M.Tolkachev. Quantitative research on the orientation of microstructures of clayey soil[J]. Acta Geologica Sinica, 1995, 6: 666-672. (in Chinese))
    [11]
    刘志彬, 施斌, 王宝军. 改性膨胀土微观孔隙定量研究[J]. 岩土工程学报, 2004, 26(4): 526-530.
    (LIU Zhi-bin, SHI Bin, WANG Bao-jun.Quantitative research on micropores of modified expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(4): 526-530. (in Chinese))
    [12]
    袁中夏, 王兰民, 邓津. 电镜图像在黄土结构性研究中应用的几个问题[J]. 工程勘察, 2005(4): 1-4.
    (YUAN Zhong-xia, WANG Lan-min, DENG Jin.Several Problems on Application of SEM Image in the Structure Properties Study of Loess[J]. Geotechnical Investigation & Surveying, 2005(4): 1-4. (in Chinese))
    [13]
    熊承仁, 唐辉明, 刘宝琛, 等. 利用SEM照片获取土的孔隙结构参数[J]. 地球科学-中国地质大学学报, 2007, 32(3): 415-419.
    (XIONG Cheng-ren, TANG Hui-ming, LIU Bao-chen, et al.Using SEM photos to gain the pore structural parameters of soil samples[J]. Earth Science-Journal of China University of Geosciences, 2007, 32(3): 415-419. (in Chinese))
    [14]
    MUTAZ E, DAFALLA M A.Chemical analysis and X-ray diffraction assessment of stabilized expansive soils[J]. Bulletin of Engineering Geology & the Environment, 2014, 73(4): 1063-1072.
    [15]
    YOOTHONG K, MONCHAROEN L, VIJARNSON P, et al.Clay mineralogy of Thai soils[J]. Applied Clay Science, 1997, 11(5/6): 357-371.
  • Related Articles

    [1]HUANG Jianyou, YAN Yutao, DIAO Yu, ZHENG Gang, LI Kai, JIA Jianwei, LIU Yongchao. Horizontal deformation of piles controlled by capsule expansion technique[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(1): 85-95. DOI: 10.11779/CJGE20230993
    [2]WEI Ran, ZHANG Liya, XIAO Zhirui, YAN Jun, WANG Bo. Deformation and control mechanism of MICP-treated expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 92-96. DOI: 10.11779/CJGE2023S10050
    [3]ZHENG Gang. Method and application of deformation control of excavations in soft ground[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 1-36. DOI: 10.11779/CJGE202201001
    [4]ZHANG Dong-mei, ZOU Wei-biao, YAN Jing-ya. Effective control of large transverse deformation of shield tunnels using grouting in soft deposits[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2203-2212. DOI: 10.11779/CJGE201412007
    [5]WANG Shu-guang. Deformation control of excavation engineering with complicated surroundings[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 474-477.
    [6]LIU Huan-cun, LI Liang-jie, WANG Cheng-liang, WEI Hai-tao. Design and deformation control of excavation support project close to a subway station[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 654-658.
    [7]LIU Shu-ya, OUYANG-Rong. Deformation of Shenzhen subway aroused by deep excavations andits risk control technology[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 638-643.
    [8]LI Zhi-wei, HOU Wei-sheng, YE Ai-li, CHEN Ke-shuai, TANG Yong. Displacement control effect of passive zone improvement at excavation section of deep foundation pits[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 621-627.
    [9]SUN Jian-ping, SHAO Guang-biao, JIANG Zong-bao. Design and construction technology of displacement control in deep miscellaneous fill foundation pits[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 576-580.
    [10]GAO Meng, GAO Guangyun, FENG Shijin, YU Zhisong. Control of deformation of operating subway station induced by adjacent deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(6): 818-823.
  • Cited by

    Periodical cited type(24)

    1. 张锐,周豫,兰天,郑健龙,刘昭京,李彬. 高速铁路土工格栅加筋膨胀土边坡作用机制. 铁道科学与工程学报. 2024(01): 1-12 .
    2. 段君义,吴俊江,粟雨,吕志涛,林宇亮,杨果林. 浅层膨胀土及其纤维改良土的剪切强度特性. 浙江大学学报(工学版). 2024(03): 547-556+569 .
    3. 陈强,秦子鹏,蒋宁,周林真,陈增然,秦玉禹,李桃,彭杨. 降雨和水位变化条件下排涝河道岸坡稳定性的数值研究. 水资源与水工程学报. 2024(01): 186-196 .
    4. 张德辉,刘伟明,冯善周,郝献省. 膨胀土边坡失稳与防治研究. 科技创新与生产力. 2024(04): 134-136+140 .
    5. 周葆春,王江伟,单丽霞,李颖,郎梦婷,孔令伟. 不同膨胀潜势等级的膨胀土残余强度环剪试验研究. 岩土工程学报. 2024(06): 1325-1331 . 本站查看
    6. 李世明,胡卫军,韩琳琳. 锚杆支护形式对高陡公路边坡稳定性的影响研究. 西部交通科技. 2024(05): 34-37 .
    7. 王骜洵,蒋函静,许帅,徐永福. 降雨入渗下非饱和土边坡浅层破坏机制分析. 中南大学学报(自然科学版). 2024(07): 2701-2711 .
    8. 冀春杰,胡贺松,崔皓,简思敏,蒋明烨,韦童. 典型特殊土处理技术研究进展. 广州建筑. 2024(04): 105-108 .
    9. 韦秉旭,曾警,程聪,陈楚方,王起. 基于流固耦合的加筋膨胀土边坡稳定性分析. 公路. 2024(09): 8-15 .
    10. 时小波,崔广炎,牟超,温野,谢峰,付啸阳. 高寒区上覆岩石层膨胀土失稳边坡治理方法研究. 中外公路. 2024(05): 17-24+38 .
    11. 白玉霞,常顺,肖衡林,李丽华,何俊,邱季,周文卓,邓永锋. 膨胀土生态治理研究进展. 岩土工程学报. 2024(S2): 60-66+176 . 本站查看
    12. 赵二平,唐加林,李志坤,张聪. 不同初始含水率下广西膨胀土膨胀变形规律及劣化机理研究. 人民珠江. 2024(11): 115-123 .
    13. 陈敏. 机场滑坡与桩锚结构支护方案研究. 江西建材. 2024(12): 227-228+235 .
    14. 刘振北. 膨胀土滑坡基本特征分析及防治措施研究. 江西建材. 2023(02): 114-115+118 .
    15. 孙超. 粉煤灰掺量对膨胀土抗剪强度的改性影响. 水利建设与管理. 2023(05): 25-30 .
    16. 吴新华,闫林芳. 滑坡防治措施设计及运营效果评价. 江西建材. 2023(04): 130-132 .
    17. 欧阳荣,吴永东. 超高边坡防治方案设计及运营效果分析. 江西建材. 2023(07): 96-97+100 .
    18. 邱兵,白慧林. 锚杆挡墙加固高陡土质边坡设计探讨——以岗白路K8+290~K8+400段路基边坡为例. 科技和产业. 2023(21): 221-226 .
    19. 周钊. 弱膨胀土路基固坡防护施工研究. 交通世界. 2023(31): 52-54 .
    20. 曹正波,李建朋. 上硬下软型膨胀土路堑滑塌成因与处治. 公路. 2023(12): 39-43 .
    21. 李晶,梁力川,邵雪停,季军远,王玉. 考虑降雨和地震作用下的铁路边坡稳定性分析. 山东农业大学学报(自然科学版). 2023(06): 887-896 .
    22. 凌时光,张锐,兰天. 膨胀土强度特性的研究进展与探究. 长沙理工大学学报(自然科学版). 2023(06): 1-16 .
    23. 周锐,王保田,王东英,王斯杰,张福海. 不同干湿条件下中等膨胀土裂隙发展及作用机理分析. 农业工程学报. 2023(21): 98-107 .
    24. 张梦涵,魏进,卞海丁. 基于机器学习的边坡稳定性分析方法——以国内618个边坡为例. 地球科学与环境学报. 2022(06): 1083-1095 .

    Other cited types(3)

Catalog

    Article views PDF downloads Cited by(27)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return