• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
TAO Gaoliang, PENG Yinjie, CHEN Yin, XIAO Henglin, LUO Chenchen, ZHONG Chuheng, LEI Da. A new fast prediction method for relative permeability coefficient of unsaturated soils based on NMR[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(3): 470-479. DOI: 10.11779/CJGE20221426
Citation: TAO Gaoliang, PENG Yinjie, CHEN Yin, XIAO Henglin, LUO Chenchen, ZHONG Chuheng, LEI Da. A new fast prediction method for relative permeability coefficient of unsaturated soils based on NMR[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(3): 470-479. DOI: 10.11779/CJGE20221426

A new fast prediction method for relative permeability coefficient of unsaturated soils based on NMR

More Information
  • Received Date: November 17, 2022
  • Available Online: March 14, 2024
  • The permeability coefficient of unsaturated soils is a particularly important parameter to study the moisture migration in unsaturated soils. The direct measurement methods have a straightforward principle, but they require larger sample sizes and longer testing time. The indirect prediction methods based on the soil-water characteristic curve (SWCC) also demand significant time and effort due to the necessity of acquiring the SWCC data. Thus, this paper combines the nuclear magnetic resonance (NMR) theory with the seepage theory to establish the relationship between the permeability coefficient and the relaxation time of pore channels with different pore sizes. Through the accumulation of permeability coefficients of different pore channels, an NMR-based prediction model and a rapid prediction method for the permeability coefficients of saturated/unsaturated soils are proposed. To verify the rationality of the model, taking the Hunan clay as the research object, 95 times NMR tests are conducted on desorption, absorption and saturated samples with different initial void ratios to obtain the corresponding NMR curves. The unsaturated relative permeability of samples with different void ratios is gained by the instantaneous profile method and compared with the predicted value of the model. The study shows that the NMR curves of desorption, absorption and saturated samples all possess good prediction effecst, while the saturated state NMR curves have the best prediction accuracy with the lowest measurement cost and the shortest time consumption. Therefore, it is suggested to use the NMR curves of saturated samples to predict the unsaturated relative permeability coefficient directly.
  • [1]
    孙德安. 非饱和土的水力和力学特性及其弹塑性描述[J]. 岩土力学, 2009, 30(11): 3217-3231. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200911003.htm

    SUN Dean. Hydro-mechanical behaviours of unsaturated soils and their elastoplastic modelling[J]. Rock and Soil Mechanics, 2009, 30(11): 3217-3231. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200911003.htm
    [2]
    PHILIP J R. Linearized unsteady multidimensional infiltration[J]. Water Resources Research, 1986, 22(12): 1717-1727. doi: 10.1029/WR022i012p01717
    [3]
    BROOKS R H, COREY A T. Hydraulic properties of porous media[J]. Transactions of the ASAE, 1964, 7(1): 0026-0028. doi: 10.13031/2013.40684
    [4]
    CHILDS E C, COLLIS-GEORGE N. The permeability of porous materials[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1950, 201(1066): 392-405.
    [5]
    MUALEM Y. A new model for predicting the hydraulic conductivity of unsaturated porous media[J]. Water Resources Research, 1976, 12(3): 513-522. doi: 10.1029/WR012i003p00513
    [6]
    BURDINE N T. Relative permeability calculations from pore size distribution data[J]. Journal of Petroleum Technology, 1953, 5(3): 71-78. doi: 10.2118/225-G
    [7]
    VAN GENUCHTEN M T. A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898. doi: 10.2136/sssaj1980.03615995004400050002x
    [8]
    FREDLUND D G, XING A Q, HUANG S Y. Predicting the permeability function for unsaturated soils using the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 1994, 31(4): 533-546. doi: 10.1139/t94-062
    [9]
    TAO G L, HUANG Z, XIAO H L, et al. A new nonlinear seepage model for clay soil considering the initial hydraulic gradient of microscopic seepage channels[J]. Computers and Geotechnics, 2023, 154: 105179. doi: 10.1016/j.compgeo.2022.105179
    [10]
    TAO G L, PENG P, CHEN Q S, et al. A new fractal model for nonlinear seepage of saturated clay considering the initial hydraulic gradient of microscopic seepage channels[J]. Journal of Hydrology, 2023, 625: 130055. doi: 10.1016/j.jhydrol.2023.130055
    [11]
    陈正汉, 谢定义, 王永胜. 非饱和土的水气运动规律及其工程性质研究[J]. 岩土工程学报, 1993, 15(3): 9-20. http://cge.nhri.cn/cn/article/id/9669

    CHEN Zhenghan, XIE Dingyi, WANG Yongsheng. Experimental studies of laws of fluid motion, suction and pore pressures in unsaturated soil[J]. Chinese Journal of Geotechnical Engineering, 1993, 15(3): 9-20. (in Chinese) http://cge.nhri.cn/cn/article/id/9669
    [12]
    姚志华, 陈正汉, 黄雪峰, 等. 非饱和原状和重塑Q3黄土渗水特性研究[J]. 岩土工程学报, 2012, 34(6): 1020-1027. http://cge.nhri.cn/cn/article/id/14601

    YAO Zhihua, CHEN Zhenghan, Huang Xuefeng, et al. Hydraulic conductivity of unsaturated undisturbed and remolded Q3 loess[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(6): 1020-1027. (in Chinese) http://cge.nhri.cn/cn/article/id/14601
    [13]
    陈正汉. 非饱和土与特殊土力学[M]. 北京: 中国建筑工业出版社, 2022.

    CHEN Zhenghan. Mechanics for Unsaturated and Special Soils[M]. Beijing: China Architecture & Building Press, 2022. (in Chinese)
    [14]
    SEEVERS D O. A nuclear magnetic method for determining the permeability of sandstones[C]//Proc, SPWLA 7th Annual Logging Symposium. Tulsa: Society of Petrophysicists and Well-Log Analysts, 1996.
    [15]
    KLEINBERG R L, STRALEY, KENYON W E, et al. Nuclear magnetic resonance of rocks: T1 vs. T2[C]//Proc, SPE Annual Technical Conference and Exhibition. Houston: Society of Petroleum Engineers, 1993.
    [16]
    陶高梁, 孔令伟. 基于微观孔隙通道的饱和/非饱和土渗透系数模型及其应用[J]. 水利学报, 2017, 48(6): 702-709. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201706008.htm

    TAO Gaoliang, KONG Lingwei. A model for determining the permeability coefficient of saturated and unsaturated soils based on micro pore channel and its application[J]. Journal of Hydraulic Engineering, 2017, 48(6): 702-709. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201706008.htm
    [17]
    JAEGER F, SHCHEGOLIKHINA A, AS V H, et al. Proton NMR relaxometry as a useful tool to evaluate swelling processes in peat soils[J]. The Open Magnetic Resonance Journal, 2010, 3: 27-45.
    [18]
    陶高梁, 吴小康, 甘世朝, 等. 不同初始孔隙比下非饱和黏土渗透性试验研究及模型预测[J]. 岩土力学, 2019, 40(5): 1761-1770, 1777. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201905016.htm

    TAO Gaoliang, WU Xiaokang, GAN Shichao, et al. Experimental study and model prediction of permeability coefficient of unsaturated clay with different initial void ratios[J]. Rock and Soil Mechanics, 2019, 40(5): 1761-1770, 1777. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201905016.htm
    [19]
    TAO G L, ZHU X L, CAI J C, et al. A fractal approach for predicting unsaturated hydraulic conduceivity of deformable clay[J]. Geofluids, 2019, 8013851.
  • Related Articles

    [1]FENG Huai-ping, MA De-liang, WANG Zhi-peng, CHANG Jian-mei. Measurement of resistivity of unsaturated soils using van der Pauw method[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 690-696. DOI: 10.11779/CJGE201704014
    [2]LIU Song-yu, BIAN Han-liang, CAI Guo-jun, CHU Ya. Influences of water and oil two-phase on electrical resistivity of oil-contaminated soils[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 170-177. DOI: 10.11779/CJGE201701016
    [3]LIU Ting-fa, NIE Yan-xia, HU Li-ming, ZHOU Qi-you, WEN Qing-bo. Model tests on moisture migration based on high-density electrical resistivity tomography method[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 761-768. DOI: 10.11779/CJGE201604023
    [4]ZHAO Yan-ru, CHEN Xiang-sheng, HUANG Li-ping, ZHOU Zhong-hua, XIE Qiang. Experimental study on electrical resistivity of municipal solid waste[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12): 2205-2216. DOI: 10.11779/CJGE201512010
    [5]GUO Xiu-jun, WU Shui-juan, MA Yuan-yuan. Quantitative investigation of landfill-leachate contaminated sand soil with electrical resistivity method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2066-2071.
    [6]LIU Bin, NIE Li-chao, LI Shu-cai, LI Li-ping, SONG Jie, LIU Zheng-yu. Numerical forward and model tests of water inrush real-time monitoring in tunnels based on electrical resistivity tomography method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2026-2035.
    [7]Numerical modeling of direct current electrical resistivity with 3D FEM based on PCG algorithm[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1846-1855.
    [8]ZHA Fusheng, LIU Songyu, DU Yanjun, CUI Kerui. Quantitative research on microstructures of expansive soils during swelling using electrical resistivity measurements[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(12): 1832-1839.
    [9]HAN Lihua, LIU Songyu, DU Yanjun. New method for testing contaminated soil——electrical resistivity method[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 1028-1032.
    [10]SUN Yue. Numerical analysis for three-dimensional resistivity model by using finite element/infinite element methods[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 733-737.
  • Cited by

    Periodical cited type(11)

    1. 吕庆强,蔡伟. 某库区移民场地条件变化后的砂土液化研究. 地质灾害与环境保护. 2024(01): 70-73 .
    2. 李雨润,范浩然,闫志晓,辛晓梅. 干砂与饱和砂土场地直斜群桩横向动力响应特性对比研究. 自然灾害学报. 2024(03): 202-216 .
    3. 杨洋,魏怡童. 基于分类树的液化概率等级评估新方法. 岩土力学. 2024(07): 2175-2186+2194 .
    4. 李萍萍,赵少飞,鲍俊文,刘子源. 基于标贯试验的含细粒砂土液化概率判别新模型. 防灾减灾工程学报. 2024(05): 1133-1139 .
    5. 袁近远,苏安双,陈龙伟,许成顺,王淼,袁晓铭,张思宇. 基于剪切波速的砾性土液化概率计算的中国方法. 岩土力学. 2024(11): 3378-3387+3415 .
    6. 袁近远,王兰民,汪云龙,袁晓铭. 不同设防水准下场地液化震害风险差异性研究. 岩石力学与工程学报. 2023(01): 246-260 .
    7. 王维铭,陈龙伟,郭婷婷,汪云龙,凌贤长. 基于中国砂土液化数据库的标准贯入试验液化判别方法研究. 岩土力学. 2023(01): 279-288 .
    8. 郝少雷,张兵,徐世光,李岳峰,陈梦瑞,邓立雄,郭薇. 基于SPT-APD-DDA的砂土液化评价方法研究. 地震工程学报. 2023(04): 877-886 .
    9. 李原,王睿,张建民. 地下水位上升对北京土层地震液化的影响. 土木工程学报. 2023(S2): 95-103 .
    10. 赵志江. 泵站基础液化判别方法分析. 水利技术监督. 2023(12): 217-221 .
    11. 邱香,袁晓铭,李鑫洋,汪云龙,李兆焱,张思宇. 不同地区数据下CPT液化判别公式的差异性与互用可行性研究. 土木工程学报. 2022(S1): 241-249 .

    Other cited types(6)

Catalog

    Article views PDF downloads Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return