• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Ying, LIU Jin, MA Xiao-fan, QI Chang-qing, LU Hong-ning. Immersion effect of polyurethane-reinforced sand based on NMR[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2342-2349. DOI: 10.11779/CJGE202012023
Citation: WANG Ying, LIU Jin, MA Xiao-fan, QI Chang-qing, LU Hong-ning. Immersion effect of polyurethane-reinforced sand based on NMR[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2342-2349. DOI: 10.11779/CJGE202012023

Immersion effect of polyurethane-reinforced sand based on NMR

More Information
  • Received Date: January 06, 2020
  • Available Online: December 05, 2022
  • In order to analyze the effect of immersion on polyurethane-solidified sand, the micro and strength characteristics of reinforced sand after immersion are tested by NMR and unconfined compression tests. The results show that with the increase of curing agent content, T2 spectra develop from a single peak to multiple peaks, and the amplitude area continues to increase. The amplitude intensity and area increase with the increase of immersion time. With the increase of curing agent content and immersion time, the total effective porosity increases, and the proportion of pore throat increases. With the increase of density, the proportion of small pore throat increases, and the proportion of big pore throat decreases. With the increase of curing agent content and immersion time, the more the bright spots in the NMR image of the sample section, the more the effective pores. With the increase of the density, the bright spots in the NMR image change from continuous concentration to non-dispersive state, and the macropores in the sample decrease and the micropores increase; and the strength decreases with the increase of immersion time. The strength of reinforced sand with curing agent of 1% is the highest before immersion for 24 h. When the content of curing agent is more than 2%, the strength increases with the increase of the content of curing agent. With the increase of density, the strength keeps increasing after immersion. The microcosmic variation of solidified sand soil is tested by NMR. The influences of water immersion on the microcosmic properties of polyurethane reinforced sand and the microcosmic mechanism of the macroscopic strength properties are revealed.
  • [1]
    SALAMATPOOR S, HAJIANNIA A, JAFARIAN Y. Physical and mechanical properties of sand stabilized by cement and natural zeolite[J]. European Physical Journal Plus, 2018, 13(5): 205.
    [2]
    CHUAH S, DUAN WH, PAN Z, et al. The properties of fly ash based geopolymer mortars made with dune sand[J]. Materials & Design, 2016, 92: 571-578.
    [3]
    朱剑锋, 饶春义, 庹秋水, 等. 硫氧镁水泥复合固化剂加固淤泥质土的试验研究[J]. 岩石力学与工程学报, 2019 (A01): 3206-3214. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S1062.htm

    ZHU Jian-feng, RAO Chun-yi, TUO Qiu-shui, et al. Experimental study on the consolidation of muddy soil with composite curing agent of Sox cement[J]. Journal of Rock Mechanics and Engineering, 2019(A01): 3206-3214. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S1062.htm
    [4]
    JAMSAWANG P, SUANSOMJEEN T, SUKONTASUKKUL P, et al. Comparative flexural performance of compacted cement-fiber-sand[J]. Geotextiles and Geomembranes, 2018, 46(4): 414-425. doi: 10.1016/j.geotexmem.2018.03.008
    [5]
    陈志昊, 刘瑾, 钱卫, 等. 高分子固化剂/纤维改良砂土的抗拉强度试验研究[J]. 工程地质学报, 2019, 27(2): 135-144. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201902016.htm

    CHEN Zhi-hao, LIU Jin, QIAN Wei, et al. Experimental study on the tensile strength of polymer curing agent/fiber modified sand[J]. Journal of Engineering Geology, 2019, 27(2): 135-144. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201902016.htm
    [6]
    彭宇, 张虎元, 林澄斌, 等. 抗疏力固化剂改性黄土工程性质及其改性机制[J]. 岩石力学与工程学报, 2017, 36(3): 762-772. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201703026.htm

    PENG Yu, ZHANG Hu-yuan, LIN Cheng-bin, et al. Engineering properties and modification mechanism of anti thinning curing agent modified loess[J]. Journal of Rock Mechanics and Engineering, 2017, 36(3): 762-772. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201703026.htm
    [7]
    刘瑾, 白玉霞, 宋泽卓, 等. OPS型固化剂改良砂土工程特性试验研究[J]. 东南大学学报(自然科学版), 2019, 49(3): 495-501. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201903013.htm

    LIU Jin, BAI Yu-xia, SONG Ze-zhuo, et al. Experimental study on engineering properties of sand improved by OPS type solidifying agent[J]. Journal of Southeast University (Natural Science Edition), 2019, 49(3): 495-501. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201903013.htm
    [8]
    LIU J, CHEN Z H, KANUNGO D P, et al. Topsoil reinforcement of sandy slope for preventing erosion using water-based polyurethane soil stabilizer[J]. Engineering Geology, 2019, 252: 125-135. doi: 10.1016/j.enggeo.2019.03.003
    [9]
    LEE S, CHUNG M, PARK H M, et al. Xanthan gum biopolymer as soil-stabilization binder for road construction using local soil in sri lanka[J]. Journal of Materials in Civil Engineering, 2019, 31(11): 06019012. doi: 10.1061/(ASCE)MT.1943-5533.0002909
    [10]
    方秋阳, 柴寿喜, 李敏, 等. 冻融循环对固化盐渍土的抗压强度与变形的影响[J]. 岩石力学与工程学报, 2016(5): 1041-1047. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201605106.htm

    FANG Qiu-yang, CHAI Shou-xi, LI Min, et al. Influence of freeze-thaw cycle on compressive strength and deformation of solidified saline soil[J]. Journal of Rock Mechanics and Engineering, 2016(5): 1041-1047. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201605106.htm
    [11]
    CAI G H, LIU S Y, ZHENG X. Influence of drying-wetting cycles on engineering properties of carbonated silt admixed with reactive MgO[J]. Construction and Building Materials, 2019, 204: 84-93.
    [12]
    周科平, 李杰林, 许玉娟, 等. 基于核磁共振技术的岩石孔隙结构特征测定[J]. 中南大学学报(自然科学版), 2012, 43(12): 4796-4800. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201212032.htm

    ZHOU Ke-ping, LI Jie-lin, XU Yu-juan, et al. Measurement of rock pore structure based on NMR technology[J]. Journal of Central South University (Science and Technology), 2012, 43(12): 4796-4800. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201212032.htm
    [13]
    YAO Y B, LIU D M. Comparison of low-field NMR and mercury intrusion porosimetry in characterizing pore size distributions of coals[J]. Fuel, 2012, 95: 152-158.
    [14]
    谢凯楠, 姜德义, 孙中光, 等. 基于低场核磁共振的干湿循环对泥质砂岩微观结构劣化特性的影响[J]. 岩土力学, 2019, 40(2): 239-245, 253. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201902027.htm

    XIE Kai-nan, JIANG De-yi, SUN Zhong-guang, et al. Effect of dry wet cycle on microstructure degradation of argillaceous sandstone based on low field NMR[J]. Geotechnical mechanics, 2019, 40(2): 239-245, 253. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201902027.htm
    [15]
    XIONG HR, YUAN K L, WEN M J, et al. Influence of pore structure on the moisture transport property of external thermal insulation composite system as studied by NMR[J]. Construction and Building Materials, 2019, 228: 116815.
    [16]
    王萍, 屈展. 基于核磁共振的脆硬性泥页岩水化损伤演化研究[J]. 岩土力学, 2015, 36(3): 687-693. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201503014.htm

    WANG Ping, QU Zhan. Study on hydration damage evolution of brittle shale based on NMR[J]. Geotechnical mechanics, 2015, 36(3): 687-693. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201503014.htm
    [17]
    刘勇健, 李彰明, 郭凌峰, 等. 基于核磁共振技术的软土三轴剪切微观孔隙特征研究[J]. 岩石力学与工程学报, 2018, 37(8): 153-161. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201808014.htm

    LIU Yong-jian, LI Zhang-ming, GUO Ling-feng, et al. Study on micro pore characteristics of triaxial shear of soft soil based on NMR technology[J]. Journal of rock mechanics and engineering, 2018, 37(8): 153-161. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201808014.htm
    [18]
    LI J L, ZHOU K P, LIU W J, et al. NMR research on deterioration characteristics of microscopic structure of sandstones in freeze-thaw cycles[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(11): 2997-3003.
    [19]
    安爱军, 廖靖云. 基于核磁共振和扫描电镜的蒙内铁路膨胀土改良细观结构研究[J]. 岩土工程学报, 2018, 40(增刊2): 152-156. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2018S2033.htm

    AN Ai-jun, LIAO Jing-yun. Study on the improved microstructure of expansive soil of Inner Mongolia railway based on NMR and SEM[J]. Journal of Geotechnical Engineering, 2018, 40(S2): 152-156. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2018S2033.htm
    [20]
    吕擎峰, 周刚, 王生新, 等. 固化盐渍土核磁共振微观特征[J]. 岩土力学, 2019, 40(1): 252-256, 266. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901023.htm

    LÜ Qing-feng, ZHOU Gang, WANG Sheng-xin, et al. NMR microscopic characteristics of solidified saline soil[J]. Geotechnical Mechanics, 2019, 40(1): 252-256, 266. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901023.htm

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return