• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YANG De-huan, WEI Chang-fu, YAN Rong-tao, TANG Qin, LIU Li. Experimental study on effects of fine particle migration and fabric change on permeability of clay[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2009-2017. DOI: 10.11779/CJGE201911005
Citation: YANG De-huan, WEI Chang-fu, YAN Rong-tao, TANG Qin, LIU Li. Experimental study on effects of fine particle migration and fabric change on permeability of clay[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2009-2017. DOI: 10.11779/CJGE201911005

Experimental study on effects of fine particle migration and fabric change on permeability of clay

More Information
  • Received Date: April 22, 2019
  • Published Date: November 24, 2019
  • The permeability of soils is of importance in the engineering design and construction. For the clayey soils, the change law and mechanism of permeability in hydrochemical environment are not clear due to the complex physicochemical interactions between the clay minerals and pore water. To explore the effects of salt solution on the permeability, a series of variable head permeability tests are performed on the remolded clay samples. The results show that the variation of the permeability with the concentration depends upon the dry density. For the samples with the dry density of 1.4 g/cm3, the permeability increases firstly and then decreases as the concentration increases. However, the permeability of samples with the dry density of 1.5 g/cm3 decreases continuously. When the direction of seepage is reversed, the permeability of the samples changes drastically. The change of permeability is irreversible under the periodical variation of the pore water concentration. In addition, the measurement of the variation of pore structure in the soils with the salt solution concentration is conducted by the nuclear magnetic resonance (NMR) analysis. Based on the above experimental results, the effects of salt solution concentration on the clay permeability are explained from two aspects: pore plugging effects caused by fine particle migration and pore sealing effects caused by fabric change.
  • [1]
    MITCHELL J K, SOGA K.Fundamentals of soil behavior[M]. New York: Wiley, 2005.
    [2]
    朱伟, 徐浩青, 王升位, 等. CaCl2溶液对不同黏土基防渗墙渗透性的影响[J]. 岩土力学, 2016, 37(5): 1224-1230.
    (ZHU Wei, XU Hao-qing, WANG Sheng-wei, et al.Influence of CaCl2 solution on the permeability of different clay-based cutoff walls[J]. Rock and Soil Mechanics, 2016, 37(5): 1224-1230. (in Chinese))
    [3]
    杨玉玲, 杜延军, 范日东, 等. 膨润土系隔离墙材料渗透特性研究综述[J]. 岩土工程学报, 2015, 37(增刊2): 210-216.
    (YANG Yu-ling, DU Yan-jun, FAN Ri-dong, et al.Advances in permeability for bentonite-based hydraulic containment barriers[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(S2): 210-216. (in Chinese))
    [4]
    汤文, 姚志宾, 李邵军, 等. 水化学作用对滑坡滑带土的物理力学特性影响试验研究[J]. 岩土力学, 2016, 37(10): 2885-2892.
    (TANG Wen, YAO Zhi-bin, LI Shao-jun, et al.Effect of pore water chemistry on physical and mechanical properties of sliding-zone soil: an experimental study[J]. Rock and Soil Mechanics, 2016, 37(10): 2885-2892. (in Chinese))
    [5]
    GOLDENBERG L C, MAGARITZ M, MANDEL S.Experimental investigation on irreversible changes of hydraulic conductivity on the seawater-freshwater interface in coastal aquifers[J]. Water Resources Research, 1983, 19(1): 77-85.
    [6]
    KHILAR K C, FOGLER H S.The existence of a critical salt concentration for particle release[J]. Journal of Colloid & Interface Science, 1984, 101(1): 214-224.
    [7]
    GOLDENBERG L C, MAGARITZ M, AMIEL A J, et al.Changes in hydraulic conductivity of laboratory sand-clay mixtures caused by a seawater-freshwater interface[J]. Journal of Hydrology, 1984, 70(1): 329-336.
    [8]
    JONES JR F O. Influence of chemical composition of water on clay blocking of permeability[J]. Journal of Petroleum Technology, 1964, 16(4): 441-446.
    [9]
    KHILAR K C, FOGLER H S.Water sensitivity of sandstones[J]. Society of Petroleum Engineers Journal, 1983, 23(1): 55-64.
    [10]
    QUIRK J P, SCHOFIELD R K.The effect of electrolyte concentration on soil permeability[J]. Journal of Soil Science, 1955, 6(2): 163-178.
    [11]
    KIA S F, FOGLER H S, REED M G.Effect of salt composition on clay release in Berea sandstones[J]. SPE Production Engineering, 1987, 2(4): 277-283.
    [12]
    XIAO M.Modeling fine particles clogging in filters and drainage layers[D]. Kansas: Kansas State University, 2001.
    [13]
    梁健伟, 房营光, 谷任国. 极细颗粒黏土渗流的微电场效应分析[J]. 岩土力学, 2010, 31(10): 3043-3050.
    (LIANG Jian-wei, FANG Ying-guang, GU Ren-guo.Analysis of microelectric field effect of seepage in tiny-particle clay[J]. Rock and Soil Mechanics, 2010, 31(10): 3043-3050. (in Chinese))
    [14]
    SRIDHARAN A, CHOUDHURY D.Computation of hydraulic conductivity of montmorillonitic clays by diffuse double layer theory[J]. International Journal of Geotechnical Engineering, 2008, 2(1): 1-10.
    [15]
    SHARIATMADARI N, SALAMI M, KARIMPOUR F M.Effect of inorganic salt solutions on some geotechnical properties of soil-bentonite mixtures as barriers[J]. International Journal of Civil Engineering, 2011, 9(2): 103-110.
    [16]
    STUDDS P G, STEWART D I, COUSENS T W.The effects of salt solutions on the properties of bentonite-sand mixtures[J]. Clay Minerals, 1998, 33(4): 651-660.
    [17]
    YILMAZ G, YETIMOGLU T, ARASAN S.Hydraulic conductivity of compacted clay liners permeated with inorganic salt solutions[J]. Waste Management & Research, 2008, 26(5): 464-473.
    [18]
    邓友生, 何平, 周成林, 等. 含盐土渗透系数变化特征的试验研究[J]. 冰川冻土, 2006, 28(5): 772-774.
    (DENG You-sheng, HE Ping, ZHOU Cheng-lin, et al.Experimental study of permeability coefficient of saline soils[J]. Journal of Glaciology and Geocryology, 2006, 28(5): 772-774. (in Chinese))
    [19]
    谌文武, 吕海敏, 吴国鹏, 等. 盐分对遗址土体渗透性及孔径的影响[J]. 中南大学学报(自然科学版), 2016, 47(8): 2747-2751.
    (CHEN Wen-wu, LÜ Hai-min, WU Guo-peng, et al.Influence of salt in site soils on permeability and pore diameter[J]. Journal of Central South University (Science and Technology), 2016, 47(8): 2747-2751. (in Chinese))
    [20]
    WANG Y H, SIU W K.Structure characteristics and mechanical properties of Kaolinite soils: I surface charges and structural characterizations[J]. Canadian Geotechnical Journal, 2006, 43(6): 587-600.
    [21]
    CHEN J, ANANDARAJAH A.Influence of pore fluid composition on volume of sediments in Kaolinite suspensions[J]. Clays and Clay Minerals, 1998, 46(2): 145-152.
    [22]
    杨德欢. 孔隙水溶液对高岭土变形特性的影响机理[D]. 桂林: 桂林理工大学, 2016.
    (YANG De-huan.Influencing mechanism of pore water chemistry on volume change behavior of Kaolinite[D]. Guilin: Guilin University of Technology, 2016. (in Chinese))
    [23]
    SL237—1999 土工试验规程[S]. 北京: 中国水利水电出版社, 1999.
    (SL237—1999 Specification of soil test[S]. Beijing: China Water & Power Press, 1999. (in Chinese))
    [24]
    傅鑫晖, 韦昌富, 颜荣涛, 等. 非饱和红黏土的强度特性研究[J]. 岩土力学, 2013, 32(增刊2): 204-209.
    (FU Xin-hui, WEI Chang-fu, YAN Rong-tao, et al.Research on strength characteristics of unsaturated red clay[J]. Rock and Soil Mechanics, 2013, 32(S2): 204-209. (in Chinese))
    [25]
    MUNGAN N.Permeability reduction through changes in pH and salinity[J]. Journal of Petroleum Technology, 1965, 17(12): 1449-1453.
    [26]
    GKAY D H, REX R W.Formation damage in sandstones caused by clay dispersion and migration[C]// Clays and Clay Minerals: Proceedings of the Fourteenth National Conference. 1966: 355-366.
    [27]
    COATES G R, XIAO L L, PRAMMER M G.NMR logging principles and application[M]. Houston: Halliburton Energy Services Publication, 1999.
    [28]
    MCNEAL B L, COLEMAN N T.Effect of solution composition on soil hydraulic conductivity[J]. Soil Science Society of America Journal, 1966, 30(3): 308-312.
    [29]
    李广信. 论土骨架与渗透力[J]. 岩土工程学报, 2016, 38(8): 1522-1528.
    (LI Guang-xin.On soil skeleton and seepage force[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1522-1528. (in Chinese))
    [30]
    田慧会, 韦昌富, 颜荣涛, 等. 粉土中二氧化碳水合物分解过程的核磁试验研究[J]. 中国科学: 物理学力学天文学, 2019, 49: 034615.
    (TIAN Hui-hui, WEI Chang-fu, YAN Rong-tao, et al.A NMR-based analysis of carbon dioxide hydrate dissociation process in silt[J]. Scientia Sinica: Physica, Mechanica &Astronomica, 2019, 49: 034615. (in Chinese))
    [31]
    LI X, ZHANG L M.Characterization of dual-structure pore-size distribution of soil[J]. Canadian Geotechnical Journal, 2009, 46(2): 129-141.
    [32]
    ANANDARAJAH A.Mechanism controlling permeability change in clays due to changes in pore fluid[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(2): 163-172.
    [33]
    SUZUKI S, PRAYONGPHAN S, ICHIKAWA Y, et al.In situ observations of the swelling of bentonite aggregates in NaCl solution[J]. Applied Clay Science, 2005, 29(2): 89-98.
    [34]
    MONTORO M A, FRANCISCA F M.Soil permeability controlled by particle-fluid interaction[J]. Geotechnical & Geological Engineering, 2010, 28(6): 851-864.
    [35]
    林国庆. 咸淡水过渡带渗透性突变的机理与效应研究[D]. 青岛: 中国海洋大学, 2006.
    (LIN Guo-qing.Mechanism and application of abrupt changes of hydraulic conductivity on the seawater-freshwater interface[D]. Qingdao: Ocean University of China, 2006. (in Chinese))
    [36]
    宋林辉, 黄强, 闫迪, 等. 水力梯度对黏土渗透性影响的试验研究[J]. 岩土工程学报, 2018, 40(9): 1635-1641.
    (SONG Lin-hui, HUANG Qiang, YAN Di, et al.Experimental study on effect of hydraulic gradient on permeability of clay[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1635-1641. (in Chinese))
    [37]
    SHARMA M M, CHAMOUN H, SARMA D S H S R, et al. Factors controlling the hydrodynamic detachment of particles from surfaces[J]. Journal of Colloid and Interface Science, 1992, 149(1): 121-134.
    [38]
    YU H H, SUN D A, TIAN H H.NMR-based analysis of shear strength of weakly expansive clay in sodium chloride solution[J]. Magnetic Resonance Imaging, 2019, 58: 6-13.
    [39]
    SRIDHARAN A.Fourth IGS-Ferroco Terzaghi Oration: 2014[J]. Indian Geotechnical Journal, 2014, 44(4): 371-399.
  • Related Articles

    [1]YING Sai, XIA Xiaozhou, WEN Tao, ZHOU Fengxi, CAO Yapeng, LI Guoyu, ZHANG Qing. Experimental study on freezing characteristic curve of soils based on nuclear magnetic resonance technology[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1437-1444. DOI: 10.11779/CJGE20230301
    [2]TAO Gaoliang, PENG Yinjie, CHEN Yin, XIAO Henglin, LUO Chenchen, ZHONG Chuheng, LEI Da. A new fast prediction method for relative permeability coefficient of unsaturated soils based on NMR[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(3): 470-479. DOI: 10.11779/CJGE20221426
    [3]WANG Enliang, LI Yuang, REN Zhifeng, JIANG Haiqiang, LIU Chengqian, ZOU Yiyun, DU Shilin. Microstructural change of improved dispersive soil based on scanning electron microscope and nuclear magnetic resonance technology[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1123-1132. DOI: 10.11779/CJGE20220331
    [4]LIU Qian-qian, CAI Guo-qing, HAN Bo-wen, QIN Yu-teng, LI Jian. Experimental study on pore structure and freezing characteristics of graded soils based on NMR[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 178-182. DOI: 10.11779/CJGE2022S1032
    [5]TIAN Jia-li, WANG Hui-min, LIU Xing-xing, XIANG Lei, SHENG JIN-chang, LUO Yu-long, ZHAN Mei-li. Permeability characteristics of sandstone based on NMR-coupled real-time seepage[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1671-1678. DOI: 10.11779/CJGE202209012
    [6]MA Dong-dong, MA Qin-yong, HUANG Kun, ZHANG Rong-rong. Pore structure and dynamic mechanical properties of geopolymer cement soil based on nuclear magnetic resonance technique[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 572-578. DOI: 10.11779/CJGE202103021
    [7]WANG Ying, LIU Jin, MA Xiao-fan, QI Chang-qing, LU Hong-ning. Immersion effect of polyurethane-reinforced sand based on NMR[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2342-2349. DOI: 10.11779/CJGE202012023
    [8]CHENG Hua, CHEN Han-qing, CAO Guang-yong, RONG Chuan-Xin, YAO Zhi-shu, CAI Hai-bing. Migration mechanism of capillary-film water in frozen soil and its experimental verification[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1790-1799. DOI: 10.11779/CJGE202010003
    [9]DU Yang, Tang Li-yun, YANG Liu-jun, WANG Xin, BAI Miao-miao. Interface characteristics of frozen soil-structure thawing process based on nuclear magnetic resonance[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2316-2322. DOI: 10.11779/CJGE201912017
    [10]AN Ai-jun, LIAO Jing-yun. Modified mesostructure of Standard Gange Railway expansive soils of Mombasa- Nairobi based on nuclear magnetic resonance and scanning electron microscope[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 152-156. DOI: 10.11779/CJGE2018S2031
  • Cited by

    Periodical cited type(9)

    1. 宋德坤,刘乐乐,王栋. 南海北部天然气水合物赋存区沉积物渗透性敏感规律试验研究. 地学前缘. 2024(06): 405-414 .
    2. 王丹,饶运章,刘戈,石亮,张美道. 离子型稀土镁盐浸矿不同深度矿土孔隙结构演化规律. 稀土. 2023(05): 92-102 .
    3. 李品良,许强,刘佳良,何攀,纪续,陈婉琳,彭大雷. 盐分影响重塑黄土渗透性的微观机制试验研究. 岩土力学. 2023(S1): 504-512 .
    4. 陈瑞敏,简文彬,张小芳,方泽化. CSFG-FR协同作用改良淤泥固化土性能试验研究. 岩土力学. 2022(04): 1020-1030 .
    5. 郭钟群,周可凡,金解放,周尖荣,尚白红. 流体理化特性对土体渗流规律影响研究进展. 有色金属科学与工程. 2022(04): 116-125 .
    6. 安鹏举,鲁莎,唐辉明,孙思璇,张子涵,缪明昊. 渗透作用下滑带细观结构演变特性. 地质科技通报. 2022(06): 169-179 .
    7. 张晓飞,陈新炜,严涛,张文伟,李守义. 基于裂缝冲刷试验的分散性土自愈性研究. 水资源与水工程学报. 2022(06): 167-173+181 .
    8. 陈仁祥,伏慧平,宋勇,王太伟,高柏. 稀土浸矿区山体滑坡特征及成因. 江西建材. 2021(01): 183-185 .
    9. 李文英,杨洋,曹成,许增光. 化学淤堵作用下尾矿砂孔隙分布及渗透特性试验研究. 水资源与水工程学报. 2021(03): 187-192 .

    Other cited types(22)

Catalog

    Article views (310) PDF downloads (229) Cited by(31)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return