• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LAN Jing-yan, SONG Xi-jun, WANG Ting. Centrifugal model tests on influences of overlying sea layer on basic period of free field[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 768-775. DOI: 10.11779/CJGE202104020
Citation: LAN Jing-yan, SONG Xi-jun, WANG Ting. Centrifugal model tests on influences of overlying sea layer on basic period of free field[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 768-775. DOI: 10.11779/CJGE202104020

Centrifugal model tests on influences of overlying sea layer on basic period of free field

More Information
  • Received Date: May 31, 2020
  • Available Online: December 04, 2022
  • Based on the dynamic centrifugation technique, two groups of model tests are designed and performed, and the geotechnical free field simulation arrays with and without water are restored and reproduced. The white noise sweep and El Centro waves with different intensities are used as the base input of the shaking table, and the traditional spectral ratio method considering cancellation interference is used to obtain the site response results of two groups of free field models under different working conditions. Through the comparative analysis of the modal response characteristics and basic period differences between watery and anhydrous sites, the function and influences of overlying water in estimating the basic period of the site are evaluated and summarized. The results show that due to the influences of the dead weight stress of overlying water, the surface peak magnification of the anhydrous model is higher than that of the watery model, and the surface time history waveform of the anhydrous model is sparse, indicating that the surface seismic waves have abundant high frequency components. Whether it is the white noise sweep or the base loading mode of El Centro wave, there are significant differences in the basic period and mode amplification factor of the two groups of free field models with and without water, indicating that the overlying water has a certain influence on the estimation of the basic period of the seafloor complex medium system, and the maximum deviation of the basic period of the land model and the sea model is 35.5%.
  • [1]
    李小军. 地震动参数区划图场地条件影响调整[J]. 岩土工程学报, 2013, 35(增刊2): 21-29. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2005.htm

    LI Xiao-jun. Adjustment of seismic ground motion parameters considering site effects in seismic zonation map[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 21-29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2005.htm
    [2]
    华永超, 齐文浩, 薄景山, 等. 场地周期的确定方法综述[J]. 地震工程与工程振动, 2020, 40(2): 239-251. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC202002025.htm

    HUA Yong-chao, QI Wen-hao, BO Jing-shan et al. Review of methods for determining site period[J]. Earthquake Engineering and Engineering Dynamics, 2020, 40(2): 239-251. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC202002025.htm
    [3]
    ZHAO J X, ZHANG J, AKIHIRO A. Attenuation relations of strong ground motion in Japan using site classification based on predominant period[J]. Bulletin of Seismological Society of America, 2006, 96(3): 898-913. doi: 10.1785/0120050122
    [4]
    陈永新, 迟明杰, 李小军. 基于强震动记录确定的场地卓越周期[J]. 地震学报, 2016, 38(1): 138-145. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201601014.htm

    CHEN Yong-xin, CHI Ming-jie, LI Xiao-jun. Determination of site dominant period based on strong motion records[J]. Acta Seismological Sinica, 2016, 38(1): 138-145. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201601014.htm
    [5]
    CHAVEZ-GARCIA F J, SANCHEZ L R, HATZFELD D. Topographic site effects and HVSR. A comparison between observations and theory[J]. Bulletin of the Seismological Society of America, 1996, 86(5): 1559-1573.
    [6]
    RONG M, FU L, WANG Z, LI X, et al. On the amplitude discrepancy of HVSR and site amplification from strong- motion observations[J]. Bulletin of the Seismological Society of America, 2017, 107(6): 2873-2884. doi: 10.1785/0120170118
    [7]
    NAKAMURA Y. A Method for dynamic characteristics estimations of subsurface using microtremors on the ground surface[J]. Quarterly Report of Railway Technical Research Institute of Japanese National Railways, 1989, 30(1): 25-33.
    [8]
    高广运, 吴世明, 周健, 等. 场地卓越周期的讨论与测定[J]. 工程勘察, 2000, 2(5): 29-31. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC200005010.htm

    GAO Guang-yun, WU Shi-ming, ZHOU Jian, et al. Discussion and measurement of site predominant period[J]. Geotechnical Investigation & Surveying, 2000, 2(5): 29-31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC200005010.htm
    [9]
    DOBRY R, OWEIS I, URZUR A. Simplified procedures for estimation the fundamental period of a soil profile[J]. Bulletin of the Seismological Society of America, 1976, 66(4): 1293-1321.
    [10]
    《工程地质手册》编委会. 工程地质手册[M]. 5版. 北京: 中国建筑工业出版社, 2006.

    Editorial Board of Engineering Geology Manual. Engineering Geology Manual[M]. 5th ed. Beijing: China Building Industry Press, 2006. (in Chinese)
    [11]
    齐文浩, 薄景山, 刘红帅. 水平成层场地基本周期的估算公式[J]. 岩土工程学报, 2013, 35(4): 779-784. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201304027.htm

    QI Wen-hao, BO Jing-shan, LIU Hong-shuai. Fundamental period formula for horizontal layered soil profiles[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 779-784. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201304027.htm
    [12]
    YANG J. Saturation effects on horizontal and vertical motions in a layered soil-bedrock system due to inclined SV waves[J]. Soil Dynamics and Earthquake Engineering 2001, 21(6): 527-536.
    [13]
    WANG S, HAO H. Effects of random variations of soil properties on site amplification of seismic ground motions[J]. Soil Dynamics and Earthquake Engineering, 2002, 22(7): 551-64.
    [14]
    ZHANG D Y, XIE W C, PANDEY M D. Synthesis of spatially correlated ground motions at varying sites based on vector-valued seismic hazard deaggregation[J]. Soil Dynamics and Earthquake Engineering, 2012, 41: 1-13.
    [15]
    荣棉水, 喻烟, 王继鑫. 基于强震观测的海域和陆域场地效应的对比研究[J]. 建筑结构, 2018, 48(增刊2): 345-349. https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG2018S2070.htm

    RONG Mian-shui, YU Tian, WANG Ji-xin. Comparative study on site-effects of sea and land area based on strong earthquake observation[J]. Building Structure, 2018, 48(S2): 345-349. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG2018S2070.htm
    [16]
    FAN S, SHI Y, LIU C, et al. Simulation of spatially varying seafloor ground motions with random seawater layer and complex terrain[J]. Soil Dynamics and Earthquake Engineering, 2018, 111: 110-118.
    [17]
    张奎, 赵成刚, 李伟华. 海底软土层对海洋地基场地动力响应的影响[J]. 岩土力学, 2019, 40(6): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201906046.htm

    ZHANG Kui, ZHAO Cheng-gang, LI Wei-hua. Study on the seismic response of the seafloor ground with seafloor soft soil[J]. Rock and Soil Mechanics, 2019, 40(6): 1-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201906046.htm
    [18]
    刘晶波, 刘祥庆, 王宗刚. 离心机振动台试验叠环式模型箱边界效应[J]. 北京工业大学学报, 2008, 34(9): 931-937. https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD200809009.htm

    LIU Jing-bo, LIU Xiang-qing, WANG Zong-gang. Boundary effect of laminar model box for shaking table tests on geotechnical centrifuge system[J]. Journal of Beijing University of Technology, 2008, 34(9): 931-937. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD200809009.htm
    [19]
    LEE C J, WEI Y C, KUO Y C. Boundary effects of a laminar container in centrifuge shaking table tests[J]. Soil Dynamic and Earthquake Engineering, 2012, 34: 37-51.
    [20]
    Building Seismic Safety Council. NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures[S]. 2020.
    [21]
    许成顺, 豆鹏飞, 杜修力, 等. 液化场地—群桩基础—结构体系动力响应分析——大型振动台模型试验研究[J]. 岩土工程学报, 2019, 41(12): 2173-2181. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201912004.htm

    XU Cheng-shun, DOU Peng-fei, DU Xiu-li, et al. Dynamic response analysis of liquefied site-pile ground foundation-structure system—large scale shaking table mdel test[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2173-181. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201912004.htm
    [22]
    BOORE D M. Simulation of ground motion using the stochastic method[J]. Pure and Applied Geophysics, 2003, 160(3/4): 635-676.
    [23]
    BORCHERDT R D. Effect of local geology on ground motion near San Francisco Bay[J]. Bulletin of the Seismological Society of America, 1970, 60(1): 29-61.
    [24]
    大琦顺彦. 地震动的谱分析入门[M]. 田琪,译. 北京: 地震出版社, 2008: 171-174.

    Yorihiko OSAKI. Shin Jishindo No Spectre Kaiseki Nyumon[M]. TIAN Qi, trans. Beijing: Seismological Press, 2008: 171-174. (in Chinese)
    [25]
    王海云. 土层场地的放大作用随深度的变化规律研究—以金银岛岩土台阵为例[J]. 地球物理学报, 2014, 57(5): 1498-1509. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201405014.htm

    WANG Hai-yun. Study on variation of soil site amplification with depth: a case at Treasure Island geotechnical array, San Francisco Bay[J]. Chinese Journal of Geophysics, 2014, 57(5): 1498-1509. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201405014.htm
    [26]
    STEIDL J H, TUMARKIN A G, ARCHULETA R J. What is a reference site?[J]. Bulletin of the Seismological Society of America, 1996, 86(6): 1733-1748.
    [27]
    DIMITRIU P, KALOGERAS I, THEODULIDIS N. Evidence of nonlinear site response in horizontal-to-vertical spectral ratio from near-field earthquakes[J]. Soil dynamics and Earthquake Engineering, 1999, 18(6): 423-435.

Catalog

    Article views (229) PDF downloads (108) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return