• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CAO Rui-lang, WANG Yu-jie, ZHAO Yu-fei, WANG Xiao-gang, HE Sun-wen, PENG Lin-jun. In-situ tests on quantitative evaluation of rock mass integrity based on drilling process index[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 679-687. DOI: 10.11779/CJGE202104010
Citation: CAO Rui-lang, WANG Yu-jie, ZHAO Yu-fei, WANG Xiao-gang, HE Sun-wen, PENG Lin-jun. In-situ tests on quantitative evaluation of rock mass integrity based on drilling process index[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 679-687. DOI: 10.11779/CJGE202104010

In-situ tests on quantitative evaluation of rock mass integrity based on drilling process index

More Information
  • Received Date: July 13, 2020
  • Available Online: December 04, 2022
  • The real-time response characteristics of drilling tools contain important engineering geological information. By interpreting the drilling data, the rock mass integrity can be quantitatively evaluated, which provides a new way to quickly obtain the geological characteristics of engineering rock mass. A new type of digital geological drilling monitoring system is established by using the high-precision digital hydraulic, torque, rotational speed and laser displacement sensors to monitor the transmission part of geological drill. Based on the real-time, continuous and synchronous drilling response characteristic parameters of drilling tools, the functional relationships among drilling thrust, rotational torque, rotational speed and drilling rate are established. On this basis, the influences of drilling machine parameters on drilling rate are filtered out, and a new index, drilling process index, is proposed to express the rock mass integrity. The digital change of the drilling process index can comprehensively reflect the fragmentation degree of rock mass, and the rock mass integrity can be obtained through the information method and data operation. The complicated procedures such as statistical work of RQD and drillingcore sketch are reduced, and the adverse influences of human subjective factors are also reduced.
  • [1]
    HOEK E. Strength of jointed rock masses[J]. Géotechnique, 2015, 33(3): 187-223.
    [2]
    ANDO M. Geological and geophysical studies of the Nojima fault from drilling: an outline of the Nojima fault zone probe[J]. The Island Arc, 2001, 10(3/4): 206-214.
    [3]
    FILLION M H, HADJIGEORGIOU J. Quantifying influence of drilling additional boreholes on quality of geological model[J]. Canadian Geotechnical Journal, 2009, 56: 347-363.
    [4]
    OLSON L, SAMSON C, MCKINNON SD. 3-D laser imaging of drill core for fracture detection and rock quality designation[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 73: 156-164. doi: 10.1016/j.ijrmms.2014.11.004
    [5]
    SARICAM T, OZTURK H. Estimation of RQD by digital image analysis using a shadow-based method[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 112: 253-265. doi: 10.1016/j.ijrmms.2018.10.032
    [6]
    YUE Z Q, LEE C F, LAW K T, et al. Automatic monitoring of rotary percussive drilling for ground characterization illustrated by a case example in Hong Kong[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(4): 573-612. doi: 10.1016/j.ijrmms.2003.12.151
    [7]
    TEALE R. The concept of specific energy in rock drilling[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1965, 2(2): 57-73.
    [8]
    HUGHES H M. Some aspects of rock machining[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1972, 9(2): 205-211.
    [9]
    DETOURNAY E, DEFOURNY E. A phenomenological model for the drilling action of drag bits[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1992, 29(1): 13-23.
    [10]
    YAGIZ S. Assessment of brittleness using rock strength and density with punch penetration test[J]. Tunnelling and Underground Space Technology, 2009, 24(1): 66-74. doi: 10.1016/j.tust.2008.04.002
    [11]
    JANTUNEN E. A summary of methods applied to tool condition monitoring in drilling[J]. International Journal of Machine Tools and Manufacture, 2002, 42(9): 997-1010. doi: 10.1016/S0890-6955(02)00040-8
    [12]
    BARTON NR, LIEN R, LUNDE J. Engineering classification of rock masses for the design of tunnel support[J]. Rock Mechanics and Rock Engineering, 1974, 6(4): 189-236.
    [13]
    许宏发, 陈锋, 王斌魏, 等. 岩体分级BQ与RMR的关系及其力学参数估计[J]. 岩土工程学报, 2014, 36(1): 195-198. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201401027.htm

    XU Hong-fa, CHEN Feng, WANG Bin-wei, et al. Relationship between RMR and BQ for rock mass classification and estimation of its mechanical parameters[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 195-198. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201401027.htm
    [14]
    HOEK E, MARINOS P, BENISSI M. Applicability of the Geological Strength Index (GSI) classification for very weak and sheared rock masses: The case of Athens schist formation[J]. Bulletin of Engineering Geology and Environment, 1998, 57: 151-160. doi: 10.1007/s100640050031
    [15]
    SCHUNNESSON . The drillability assessment of rocks using the different brittleness values[J]. Tunnelling & Underground Space Technology, 1996, 11(3): 345-351.
    [16]
    GUI M W, SOGA K, BOLTON M D, et al. Instrumented borehole drilling for subsurface investigation[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2002, 128(4): 283-291.
    [17]
    SAEIDI O, TORABI SR, ATAEI M. Development of a new index to assess the rock mass drillability[J]. Geotechnical and Geological Engineering, 2013, 31(5): 1477-1495.
    [18]
    刘建民, 曹治国. 考虑钻孔速率的公路隧道围岩类别超前分类研究[J]. 公路交通科技, 2007, 24(5): 99-102. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200705022.htm

    LIU Jian-min, CAO Zhi-guo. Study of surrounding rock stability classification considering drilling rock rate[J]. Journal of Highway and Transportation Research and Development, 2007, 24(5): 99-102. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200705022.htm
    [19]
    邱道宏, 李术才, 薛翊国, 等. 基于数字钻进技术和量子遗传-径向基函数神经网络的围岩类别超前识别技术研究[J]. 岩土力学, 2014, 35(7): 2013-2018. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201407035.htm

    QIU Dao-hong, LI Shu-cai, XUE Yi-guo, et al. Advanced prediction of surrounding rock classification based on digital drilling technology and QGA-RBF neural network[J]. Rock and Soil Mechanics, 2014, 35(7): 2013-2018. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201407035.htm
    [20]
    田昊, 李术才, 薛翊国, 等. 基于钻进能量理论的隧道凝灰岩地层界面识别及围岩分级方法[J]. 岩土力学, 2012, 33(8): 2457-2464. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201208035.htm

    TIAN Hao, LI Shu-cai, XUE Yi-guo, et al. Identification of interface of tuff stratum and classfication of surrounding rock of tunnel using drilling energy theory[J]. Rock and Soil Mechanics, 2012, 33(8): 2457-2464. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201208035.htm
    [21]
    谭卓英, 蔡美峰, 岳中琦, 等. 钻进参数用于香港复杂风化花岗岩地层的界面识别[J]. 岩石力学与工程学报, 2006, 25(增刊1): 2939-2945. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2006S1050.htm

    TAN Zhuo-ying, CAI Mei-feng, YUE Zhong-qi, et al. Interface identification of intricate weathered granite ground investigation in Hong Kong using drilling parameters[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(S1): 2939-2945. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2006S1050.htm
    [22]
    YARALI O, KAHRAMAN S. The drillability assessment of rocks using the different brittleness values[J]. Tunnelling and Underground Space Technology, 2011, 26(2): 406-414.
    [23]
    DARBOR M, FARAMARZI L, SHARIFZADEH M. Performance assessment of rotary drilling using non-linear multiple regression analysis and multilayer perceptron neural network[J]. Bulletin of Engineering Geology and the Environment, 2019, 78: 1501-1513.
    [24]
    岳中琦. 钻孔过程监测(DPM)对工程岩体质量评价方法的完善与提升[J]. 岩石力学与工程学报, 2014, 33(10): 1977-1996. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201410005.htm

    YUE Zhong-qi. Drilling process monitoring for refining and upgrading rock mass quality classification methods[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(10): 1977-1996. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201410005.htm
    [25]
    RU Z L, ZHAO H B, ZHU C X. Probabilistic evaluation of drilling rate index based on a least square support vector machine and Monte Carlo simulation. Bulletin of Engineering Geology and the Environment[J]. Bulletin of Engineering Geology and the Environment, 2019, 78: 3111-3118.
    [26]
    KALANTARI S, BAGHBANAN A, HASHEMALHOSSEINI H. An analytical model for estimating rock strength parameters from small-scale drilling data[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2019, 11(1): 139-149.
    [27]
    WANG Q, GAO H, JIANG B, et al. Research on an evaluation method for the strength of broken coal mass reinforced by cement slurry based on digital drilling test technology[J]. Bulletin of Engineering Geology and the Environment, 2019, 78: 4599-4609.
    [28]
    HARRISON J P. Selection of the threshold value in RQD assessments[J]. International Journal of Rock Mechanics & Mining Sciences, 1999, 36(5): 673-685.
  • Related Articles

    [1]HE Jun, LI Wenjing, MEI Lifang, KANG Duoyun, ZUO Ziwei. Effects of preloading on seawater erosion resistance of solidified soil[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 247-252. DOI: 10.11779/CJGE2024S20041
    [2]MA Qiang, LI Meng, ZHOU Xinlong, XI Lei, SUN Jun. Mechanical properties and microscopic mechanisms of enzyme-induced calcium carbonate precipitation (EICP)-reinforced clay mixtures with rubber particles[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 72-76. DOI: 10.11779/CJGE2024S20001
    [3]LI Wentao, SUN Zhanghao, ZHUANG Yan, XIAO Henglin, FU Zhiwei, ZHOU Xinlong. Mechanical and swelling properties, as well as micro-mechanism of sulfate-bearing soil stabilized by magnesium oxide and cement[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1840-1848. DOI: 10.11779/CJGE20230409
    [4]LIU Hang, DENG Tingting, DENG Yongfeng, ZHAN liangtong, LIU Songyu. Mixing workability and strength enhancement of cement-stabilized clay with tung oil[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 898-904. DOI: 10.11779/CJGE20221508
    [5]LIU Hong-fei, LIU Jun-fang, SU Yue-hong, JIN Yan. New method for dealing with unconfined compressive strength outliers[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 137-140. DOI: 10.11779/CJGE2020S1027
    [6]WU Hao-liang, BO Yu-ling, DU Yan-jun, WEI Ming-li, XUE Qiang. Acid neutralization capacity, strength properties and micro-mechanism of Pb-contaminated soils stabilized by alkali-activated GGBS[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 137-140. DOI: 10.11779/CJGE2019S1035
    [7]WANG Dong-xing, HE Fu-jin, ZHU Jia-ye. Performance and mechanism of CO2 carbonated slag-CaO- MgO-solidified soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2197-2206. DOI: 10.11779/CJGE201912004
    [8]WANG Zhen-hua, XIANG Wei, WU Xue-ting, CUI De-shan. Influences of alkaline oxidant on strength of cement-stabilized sludge[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 693-699. DOI: 10.11779/CJGE201904012
    [9]DENG Yong-feng, WU Zi-long, LIU Song-yu, YUE Xi-bing, ZHU Lei-lei, CHEN Jiang-hua, GUAN Yun-fei. Influence of geopolymer on strength of cement-stabilized soils and its mechanism[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 446-453. DOI: 10.11779/CJGE201603007
    [10]ZHUANG Xinshan, WANG Gongxun, ZHU Ruigeng, TIAN Bi. Experimental study on unconfined compressive strength of clays stabilized with fly ash and slag[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(8): 965-969.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return