• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Wen-jun, CAO Wen-zhen. Mechanical and waterproof performances of joints of shield tunnels with large cross-section under earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 653-660. DOI: 10.11779/CJGE202104007
Citation: ZHANG Wen-jun, CAO Wen-zhen. Mechanical and waterproof performances of joints of shield tunnels with large cross-section under earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 653-660. DOI: 10.11779/CJGE202104007

Mechanical and waterproof performances of joints of shield tunnels with large cross-section under earthquakes

More Information
  • Received Date: August 13, 2020
  • Available Online: December 04, 2022
  • In order to study the mechanical and waterproof performances of joints of large-section shield tunnels under seismic conditions, ABAQUS is used to establish a 3D stratum-structure finite element model and a 2D sealing gasket finite element solid model. The mechanical properties, offset, and openings are studied for the segmental joints. Based on the deformation results of the joints at different positions, the deterioration of the waterproof performance of the tunnel is discussed. The results show that: (1) The maximum principal tensile stress of the joints at the lower part of the arch waist under moderate and large earthquakes exceeds the maximum tensile strength of concrete, leading to damage on the concrete. (2) The size of longitudinal joints keeps basically the same under different earthquakes, and their distribution is like a "glass" shape. The amount of misalignment between the arch top and the arch bottom is relatively small, while the amount of misalignment at the arch waist and arch feet is relatively large. (3) The joints at the right side of the dome have the best waterproof capacity of 2.77 MPa, which is only 16% weaker than that under the normal situation. The waterproof performance is severely weakened by 40% at the joints near the arch waist.
  • [1]
    刘晶波, 李彬, 谷音. 地铁盾构隧道地震反应分析[J]. 清华大学学报(自然科学版), 2005, 45(6): 757-760. doi: 10.3321/j.issn:1000-0054.2005.06.011

    LIU Jing-bo, LI Bin, GU Yin. Seismic response analysis of subway shield tunnel[J]. Journal of Tsinghua University (Natural Science Edition), 2005, 45(6): 757-760. (in Chinese) doi: 10.3321/j.issn:1000-0054.2005.06.011
    [2]
    MIZUNO K, KOIZUMI A, et al. Dynamic behavior of shield tunnel in transverse direction considering effects of staggered-jointed ring[C]//Title of Host Publication Wind and Earthquake Engineering-Proceedings of the 10th East Asia-Pacific Conference on Structural Engineering and Construction, 2010, Bangkok.
    [3]
    潘佳春. 地铁盾构隧道的地震响应分析与减震隔震研究[D]. 淮南: 安徽理工大学, 2019.

    PAN Jia-chun. Seismic Response Analysis and Shock Absorption and Isolation of Subway Shield Tunnel[D]. Huainan: Anhui University of Science and Technology, 2019. (in Chinese)
    [4]
    朱彤, 王睿, 张建民. 盾构隧道在可液化场地中的地震响应分析[J]. 岩土工程学报, 2019, 41(增刊1): 57-60. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S1016.htm

    ZHU Tong, WANG Rui, ZHANG Jian-min. Seismic response analysis of shield tunnel in liquefiable site[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 57-60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S1016.htm
    [5]
    郭凯. 盾构隧道管片静力和动力响应特性的有限元模拟分析[D]. 大连: 大连理工大学, 2019.

    GUO Kai. Finite Element Simulation Analysis of Static and Dynamic Response Characteristics of Shield Tunnel Slices[D]. Dalian: Dalian University of Technology, 2019. (in Chinese)
    [6]
    张稳军, 焦亚磊, 张高乐. 复杂地层条件下大断面盾构隧道纵向地震响应分析[J]. 施工技术, 2019, 48(9): 48-51. https://www.cnki.com.cn/Article/CJFDTOTAL-SGJS201909014.htm

    ZHANG Wen-jun, JIAO Ya-lei, ZHANG Gaul-le. Analysis of longitudinal seismic response of shield tunnel with large cross-section under complex stratum conditions[J]. Construction Technology, 2019, 48(9): 48-51. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SGJS201909014.htm
    [7]
    禹海涛, 吴胤翔, 涂新斌, 等. 盾构隧道纵向地震响应的多尺度分析方法[J]. 中国公路学报, 2020, 33(1): 138-144, 152. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202001014.htm

    YU Hai-tao, WU Yin-xiang, TU Xin-bin, et al. Multi-scale analysis of longitudinal seismic response of shield tunnel[J]. Chinese Journal of Highways, 2020, 33(1): 138-144, 152. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202001014.htm
    [8]
    杨贵生, 李宏亮, 丁超, 等. 地铁盾构隧道衬砌管片密封槽尺寸优化分析[J]. 土木工程学报, 2019, 52(增刊1): 93-98, 232. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2019S1013.htm

    YANG Gui-sheng, LI Hong-liang, DING Chao, et al. Optimization analysis of the sealing groove size of subway shield tunnel lining[J]. Journal of Civil Engineering, 2019, 52(S1): 93-98, 232. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2019S1013.htm
    [9]
    金跃郎, 丁文其, 肖明清, 等. 苏通GIL综合管廊超高水压盾构隧道接缝防水性能试验研究[J]. 隧道建设(中英文), 2020, 40(4): 538-544. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD202004014.htm

    JIN Yue-lang, DING Wen-qi, XIAO Ming-qing, et al. Experimental study on waterproofing performance of shield tunnel joints with ultra-high water pressure in sutong GIL comprehensive pipe gallery[J]. Tunnel Construction (in Chinese and English), 2020, 40(4): 538-544. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD202004014.htm
    [10]
    张稳军, 丁超, 张成平, 等.不同错台量对复合型密封垫影响及长期防水预测[J]. 隧道建设(中英文), 2020, 40(3): 337-345. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD202003005.htm

    ZHANG Wen-jun, DING Chao, ZHANG Cheng-ping, et al. Influence of different fault sets on composite gasket and long-term waterproof prediction[J]. Tunnel Construction (in Chinese and English), 2020, 40(3): 337-345. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD202003005.htm
    [11]
    DING W Q, GONG C J, MOSALAM K M, et al. Development and application of the integrated sealant test apparatus for sealing gaskets in tunnel segmental joints[J]. Tunnelling and Underground Space Technology, 2017, 63: 54.
    [12]
    GONG C J, DING W Q, MOSALAM KHALID M.. Performance-based design of joint waterproofing of segmental tunnel linings using hybrid computational/ experimental procedures[J]. Tunnelling and Underground Space Technology, 2020, 96: 103172.
    [13]
    李拼, 谢宏明, 何川, 等. 基于有效接触应力的大张开量盾构隧道密封垫防水性能分析[J]. 隧道建设(中英文), 2019, 39(12): 1993-1999. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201912012.htm

    LI Pin, XIE Hong-ming, HE Chuan, et al. Analysis of waterproof performance of large opening shield tunnel gasket based on effective contact stress[J]. Tunnel Construction (in Chinese and English), 2019, 39(12): 1993-1999. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201912012.htm
    [14]
    LI X, ZHOU S H, DI H G, et al. Evaluation and experimental study on the sealant behaviour of double gaskets for shield tunnel lining[J]. Tunnelling and Underground Space Technology, 2018, 75: 81-89.
    [15]
    焦亚磊. 软硬突变地层大直径盾构隧道纵向地震响应研究[D]. 天津: 天津大学, 2018.

    JIAO Ya-lei. Longitudinal Seismic Response of Large-Diameter Shield Tunnels in Soft and Hard Abrupt Formations[D]. Tianjin: Tianjin University, 2018. (in Chinese)
    [16]
    建筑抗震设计规范:GB50011—2010[S]. 2016.

    Code for Seismic Design of Buildings: GB50011—2010[S]. 2016. (in Chinese)
    [17]
    马笙杰, 迟明杰, 陈红娟, 等. 黏弹性人工边界在ABAQUS中的实现及地震动输入方法的比较研究[J]. 岩石力学与工程学报, 2020, 39(7): 1445-1457. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202007013.htm

    MA Sheng-jie, CHI Ming-jie, CHEN Hong-juan, et al. Realization of viscoelastic artificial boundary in ABAQUS and comparative study of ground motion input methods[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(7): 1445-1457. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202007013.htm
    [18]
    张稳军, 李宏亮, 高文元, 等. 防控盾构隧道渗漏灾变的管片密封垫尺寸优化[J]. 施工技术, 2019, 48(9): 43-47. https://www.cnki.com.cn/Article/CJFDTOTAL-SGJS201909013.htm

    ZHANG Wen-jun, LI Hong-liang, GAO Wen-yuan, et al. Optimization of segment gasket size for prevention and control of shield tunnel leakage[J]. Construction Technology, 2019, 48(9): 43-47. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SGJS201909013.htm
    [19]
    欧阳文彪. 盾构隧道橡胶密封垫力学性能试验及数值分析[J]. 隧道建设, 2013, 33(11): 933-936. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201311013.htm

    OUYANG Wen-biao. Mechanical test and numerical analysis of elastic gaskets of shield tunnels[J]. Tunnel Construction, 2013, 33(11): 933-936. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201311013.htm
    [20]
    赵明, 丁文其, 彭益成, 等. 高水压盾构隧道管片接缝防水可靠性试验研究[J]. 现代隧道技术, 2013, 50(3): 87-93. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201303015.htm

    ZHAO Ming, DING Wen-qi, PENG Yi-cheng, et al. Experimental study on the reliability of shield tunnel segment joints to remain watertight under high water pressure[J]. Modern Tunnelling Technology, 2013, 50(3): 87-93. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201303015.htm
  • Related Articles

    [1]HE Jun, LI Wenjing, MEI Lifang, KANG Duoyun, ZUO Ziwei. Effects of preloading on seawater erosion resistance of solidified soil[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 247-252. DOI: 10.11779/CJGE2024S20041
    [2]MA Qiang, LI Meng, ZHOU Xinlong, XI Lei, SUN Jun. Mechanical properties and microscopic mechanisms of enzyme-induced calcium carbonate precipitation (EICP)-reinforced clay mixtures with rubber particles[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 72-76. DOI: 10.11779/CJGE2024S20001
    [3]LI Wentao, SUN Zhanghao, ZHUANG Yan, XIAO Henglin, FU Zhiwei, ZHOU Xinlong. Mechanical and swelling properties, as well as micro-mechanism of sulfate-bearing soil stabilized by magnesium oxide and cement[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1840-1848. DOI: 10.11779/CJGE20230409
    [4]LIU Hang, DENG Tingting, DENG Yongfeng, ZHAN liangtong, LIU Songyu. Mixing workability and strength enhancement of cement-stabilized clay with tung oil[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 898-904. DOI: 10.11779/CJGE20221508
    [5]LIU Hong-fei, LIU Jun-fang, SU Yue-hong, JIN Yan. New method for dealing with unconfined compressive strength outliers[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 137-140. DOI: 10.11779/CJGE2020S1027
    [6]WU Hao-liang, BO Yu-ling, DU Yan-jun, WEI Ming-li, XUE Qiang. Acid neutralization capacity, strength properties and micro-mechanism of Pb-contaminated soils stabilized by alkali-activated GGBS[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 137-140. DOI: 10.11779/CJGE2019S1035
    [7]WANG Dong-xing, HE Fu-jin, ZHU Jia-ye. Performance and mechanism of CO2 carbonated slag-CaO- MgO-solidified soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2197-2206. DOI: 10.11779/CJGE201912004
    [8]WANG Zhen-hua, XIANG Wei, WU Xue-ting, CUI De-shan. Influences of alkaline oxidant on strength of cement-stabilized sludge[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 693-699. DOI: 10.11779/CJGE201904012
    [9]DENG Yong-feng, WU Zi-long, LIU Song-yu, YUE Xi-bing, ZHU Lei-lei, CHEN Jiang-hua, GUAN Yun-fei. Influence of geopolymer on strength of cement-stabilized soils and its mechanism[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 446-453. DOI: 10.11779/CJGE201603007
    [10]ZHUANG Xinshan, WANG Gongxun, ZHU Ruigeng, TIAN Bi. Experimental study on unconfined compressive strength of clays stabilized with fly ash and slag[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(8): 965-969.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return