• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Gang, ZHA Jing-jing, WEI Xing. Evolution of particle crushing of carbonate sands under cyclic triaxial stress path[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 755-760. DOI: 10.11779/CJGE201904020
Citation: WANG Gang, ZHA Jing-jing, WEI Xing. Evolution of particle crushing of carbonate sands under cyclic triaxial stress path[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 755-760. DOI: 10.11779/CJGE201904020

Evolution of particle crushing of carbonate sands under cyclic triaxial stress path

More Information
  • Received Date: March 26, 2018
  • Published Date: April 24, 2019
  • The carbonate sand is widely distributed in the South China Sea and used as the fill materials for land reclamation. Carbonate sand particles are fragile and can be easily crushed, making the carbonate sand exhibit distinctive mechanical behaviors compared with terrestrial silica sand. Triaxial cyclic shear tests under drained conditions are conducted on a carbonate sand taken from a reef in the South China Sea to investigate the evolution of particle crushing during cyclic shearing process. In the range of the adopted confining pressure, little particle crushing is observed in isotropic consolidation process. In contrast, remarkable particle crushing occurs during the following cyclic shearing process. Angular abrasion is the main form of particle crushing, leading to the increase of the fine particle content in the post-shearing grading. Along with the continuation of cyclic shearing, the amount of particle crushing increases continuously, but the increasing rate decreases gradually. For the cyclic shearing of constant amplitude under constant confining pressure, a logarithmic equation can be used to fit the curve of the relative breakage index versus the number of cycles. Based on with the observed influencing laws of confining pressure and cyclic stress ratio on particle crushing, a mathematical model is proposed to describe the evolution process of particle crushing during cyclic shearing process.
  • [1]
    KJAERNSLI B, SANDE A.Compressibility of some coarse grained materials[C]// Proceedings of the 1st European Conference on Soil Mechanics and Foundation Engineering. Weisbaden, 1963, 1: 245-251.
    [2]
    HALL E B, GORDON B B.Triaxial testing with large-scale high pressure equipment[J]. Laboratory Shear Testing of Soils, 1963, 361: 315-328.
    [3]
    常俊, 陈新民, 吕扬. 高应力条件下南京砂破碎特性的试验[J]. 南京工业大学学报(自然科学版), 2008, 30(4): 88-92.
    (CHANG Jun, CHEN Xin-min, LÜ Yang.Experiment on particle crush mechanism of Nanjing sand under high stress[J]. Journal of Nanjing University of Technology (Natural Science Edition), 2008, 30(4): 88-92. (in Chinese))
    [4]
    张家铭, 蒋国盛, 汪稔. 颗粒破碎及剪胀对钙质砂抗剪强度影响研究[J]. 岩土力学, 2009, 30(7): 2043-2048.
    (ZHANG Jia-ming, JIANG Guo-sheng, WANG Ren.Research on influences of particle breakage and dilatancy on shear strength of calcareous sands[J]. Rock and Soil Mechanics, 2009, 30(7): 2043-2048. (in Chinese))
    [5]
    QADIMI A, COOP M R.The undrained cyclic behaviour of a carbonate sand[J]. Géotechnique, 2007, 57(9): 739-750.
    [6]
    DONOHUE S, O‘SULLIVAN C, LONG M. Particle breakage during cyclic triaxial loading of a carbonate sand[J]. Géotechnique, 2009, 59(5): 477-482.
    [7]
    GOLIGHTLY C R, HYDE A F L. Some fundamental properties of carbonates sands[C]// Proceedings of the International Conference on Calcareous Sediments. Perth, 1988, 1: 69-78.
    [8]
    HULL T S, POULUS H G, ALEHOSSEIN H.The static behavior of various calcareous sediments[C]// Proceedings of the International Conference on Calcareous Sediments. Perth, 1988.
    [9]
    FLYNN W L.A comparative study of cyclic loading responses and effects of cementation on liquefaction potential of calcareous and silica sands[D]. Manoa: University of Hawaii, 1997.
    [10]
    HYODO M, HYDE A F L, ARAMAKI N. Liquefaction of crushable soils[J]. Géotechnique, 1998, 48(4): 527-543.
    [11]
    MORIOKA B T, NICHOLSON P G.Evaluation of the liquefaction potential of calcareous sand[C]// Proceedings of the 10th International Offshore and Polar Engineering Conference. Seattle, 2000.
    [12]
    张建民. 砂土的可逆性和不可逆性剪胀规律[J]. 岩土工程学报, 2000, 22(1): 12-17.
    (ZHANG Jian-min.Reversible and irreversible dilatancy of sand[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(1): 12-17. (in Chinese))
    [13]
    GUYON E, TROADEC J P.Du sac de billes au tas de sable[M]. France: Odile Jacob Science, 1994.
    (GUYON É, TROADEC J P.Du sac de billes au tas de sable[M]. Odile Jacob Sciences, France, 1994. (in France))
    [14]
    VESIC A S, CLOUGH G W.Behavior of granular materials under high stresses[J]. Journal of Soil Mechanics and Foundation Division, ASCE, 1968, 94(SM3): 661-688.
    [15]
    NAKATA Y, HYODO M, HYDE A F L, et al. Microscopic particle crushing of sand subjected to high pressure one-dimensional compression[J]. Soils and Foundations, 2001, 41(1): 69-82.
    [16]
    BASTIDAS P A M. Ottawa F-65 sand characterization[D]. California: University of California at Davis, 2016.
    [17]
    吴京平, 褚瑶, 楼志刚. 颗粒破碎对钙质砂变形及强度特性的影响[J]. 岩土工程学报, 1997, 19(5): 51-57.
    (WU Jing-ping, CHU Yao, LOU Zhi-gang.Influence of particle breakage on deformation and strength properties of calcareous sands[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(5): 51-57. (in Chinese))
    [18]
    COOP M R, SORENSEN K K, BODAS T, et al.Particle breakage during shearing of a carbonate sand[J]. Géotechnique, 2004, 54(3): 157-163.
    [19]
    张家铭, 张凌, 蒋国盛, 等. 剪切作用下钙质砂颗粒破碎试验研究[J]. 岩土力学, 2008, 29(10): 2789-2793.
    (ZHANG Jia-ming, ZHANG Lin, JIANG Guo-sheng, et al.Research on particle crushing of calcareous sands under triaxial shear[J]. Rock and Soil Mechanics, 2008, 29(10): 2789-2793. (in Chinese))
    [20]
    王刚, 叶沁果, 查京京. 珊瑚礁砂砾料力学行为与颗粒破碎的试验研究[J]. 岩土工程学报, 2018, 40(5): 802-810.
    (WANG Gang, YE Qin-guo, ZHA Jing-jing.Experimental study on mechanical behavior and particle crushing of coral sand-gravel fills[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 802-810. (in Chinese))
    [21]
    HARDIN B O.Crushing of soil particles[J]. Journal of Geotechnical Engineering ASCE, 1985, 111(10): 1177-1192.
  • Cited by

    Periodical cited type(35)

    1. 王家全,和玉,林志南,唐毅. 考虑温度效应下海砂动力特性试验研究. 土木工程学报. 2025(02): 118-128 .
    2. 谢永晟,杨果岳,王阳,杨少光. 剪切速率对水泥胶结钙质砂强度及变形的影响. 湘潭大学学报(自然科学版). 2024(01): 83-91 .
    3. 王家全,和玉,祝梦柯,钱弘毅. 相对密实度和固结应力比对北部湾海砂动力特性影响的试验研究. 安全与环境工程. 2024(04): 20-28 .
    4. 陈军浩,张艳娥,王刚,王恒. 不同固结路径下钙质砂固结排水强度性状研究. 岩土力学. 2024(08): 2290-2298 .
    5. 王路阳,吴琪,周正龙,张鑫磊,王炳辉,陈国兴. 饱和珊瑚砂体应变发展模式与预测模型试验研究. 岩土工程学报. 2024(09): 1965-1973 . 本站查看
    6. 毛无卫,陈洁朋,潘龙. 珊瑚砂中桩贯入过程的声发射特征. 工程地质学报. 2024(05): 1872-1879 .
    7. 杨铮涛,王路阳,吴琪,周正龙,陈国兴. 细粒含量和相对密度对饱和珊瑚砂体应变发展特性影响试验. 工程科学与技术. 2024(06): 197-206 .
    8. 吕亚茹,丁思超,李欣,苏宇宸,王媛,左殿军. 钙质砂循环剪切特性及抗剪强度弱化机制. 岩石力学与工程学报. 2024(11): 2811-2822 .
    9. 李雪,王滢,高盟,陈青生,彭晓东. 地震荷载作用下南海非饱和钙质砂动力特性研究. 岩土力学. 2023(03): 821-833 .
    10. 曾凯锋,向富榆,刘华北. 钙质砂单调及循环单剪试验研究. 华中科技大学学报(自然科学版). 2023(07): 27-35 .
    11. 曾凯锋,曾凡祥,刘华北. 加筋钙质砂三轴试验研究. 工程地质学报. 2023(03): 1049-1058 .
    12. 李能,吴杨,周福霖,谭平. 岛礁吹填珊瑚砂不排水单调和循环剪切特性试验. 中国公路学报. 2023(08): 152-161 .
    13. 吴琪,王路阳,刘启菲,周正龙,马维嘉,陈国兴. 基于剪切应变特征的饱和珊瑚砂超静孔压发展模型试验研究. 岩土工程学报. 2023(10): 2091-2099 . 本站查看
    14. 高雪,高燕,孙可天,史天根. 剪切过程中钙质砂的颗粒破碎与能量演化. 中山大学学报(自然科学版)(中英文). 2023(06): 11-21 .
    15. 覃晓,吴湛坤,彭华洲. 珊瑚礁砂水稳层工艺及应用. 工程建设. 2023(11): 64-67+73 .
    16. 张磊,杨俊杰,王子玉. MICP胶结钙质砂长期变形特性试验研究. 海洋湖沼通报. 2023(06): 19-26 .
    17. 高燕,史天根,李文龙,陈庆. 钙质砂压缩过程中颗粒破碎的细观特征. 水力发电学报. 2022(06): 120-130 .
    18. 王青,侯贺营,康鑫睿,李天翔,姜朋明,周爱兆. 直剪条件下钙质砂强度及颗粒破碎. 科学技术与工程. 2022(15): 6240-6247 .
    19. 吴琪,杨铮涛,刘抗,陈国兴. 细粒含量对饱和珊瑚砂动力变形特性影响试验研究. 岩土工程学报. 2022(08): 1386-1396 . 本站查看
    20. 王伟光,姚志华,李婉,张建华. 侧限高压下珊瑚砂-石英砂混合料的压缩特性及颗粒破碎行为. 岩土工程学报. 2022(S1): 6-11 . 本站查看
    21. 王兆南,王刚,叶沁果,殷浩. 三轴应力路径下珊瑚砂的颗粒破碎模型. 岩土工程学报. 2021(03): 540-546 . 本站查看
    22. 张季如,罗明星,彭伟珂,张弼文. 不同应力路径下钙质砂力学特性的排水三轴试验研究. 岩土工程学报. 2021(04): 593-602 . 本站查看
    23. 王兆南,王刚,叶沁果,查京京. 考虑颗粒破碎的钙质砂边界面循环本构模型. 岩土工程学报. 2021(05): 886-892 . 本站查看
    24. 高盟,彭晓东,陈青生. 南海非饱和钙质砂动力特性三轴试验研究. 北京工业大学学报. 2021(06): 625-635 .
    25. 王刚,杨俊杰,王兆南. 钙质砂临界状态随颗粒破碎演化规律分析. 岩土工程学报. 2021(08): 1511-1517 . 本站查看
    26. 高运昌,彭晓东,高盟,陈青生. 南海钙质砂的液化特性动三轴试验研究. 山东科技大学学报(自然科学版). 2020(02): 69-76 .
    27. 张村,赵毅鑫,屠世浩,张通. 采空区破碎煤岩样压实再次破碎特征的数值模拟研究. 岩土工程学报. 2020(04): 696-704 . 本站查看
    28. 杨超. 钙质砂颗粒破碎的研究进展. 五邑大学学报(自然科学版). 2020(01): 52-57+67 .
    29. 王伟光. 钙质砂宏观力学变形特征及颗粒破碎研究进展. 山西建筑. 2020(17): 65-71 .
    30. 张丙树,顾凯,李金文,唐朝生,施斌,李天斌. 钙质砂破碎过程及其微观机制试验研究. 工程地质学报. 2020(04): 725-733 .
    31. 张季如,华晨,罗明星,张弼文. 三轴排水剪切下钙质砂的颗粒破碎特性. 岩土工程学报. 2020(09): 1593-1602 . 本站查看
    32. 梁文成,唐群艳. 热带岛礁珊瑚礁地层工程性质研究. 港工技术. 2020(05): 116-120 .
    33. 何绍衡,刘志军,夏唐代,周红星,于丙琪. 长期循环荷载下珊瑚砂累积变形特性试验研究. 岩土工程学报. 2019(S2): 161-164 . 本站查看
    34. 柴维,龙志林,旷杜敏,陈佳敏,闫超萍. 直剪剪切速率对钙质砂强度及变形特征的影响. 岩土力学. 2019(S1): 359-366 .
    35. 高冉,叶剑红. 中国南海吹填岛礁钙质砂动力特性试验研究. 岩土力学. 2019(10): 3897-3908+3919 .

    Other cited types(30)

Catalog

    Article views (403) PDF downloads (203) Cited by(65)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return