Citation: | WU Qi, WANG Luyang, LIU Qifei, ZHOU Zhenglong, MA Weijia, CHEN Guoxing. Experimental study on development model of excess pore pressure for saturated coral sand based on shear strain characteristics[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2091-2099. DOI: 10.11779/CJGE20220956 |
[1] |
马维嘉, 陈国兴, 李磊, 等. 循环荷载下饱和南沙珊瑚砂的液化特性试验研究[J]. 岩土工程学报, 2019, 41(5): 981-988. doi: 10.11779/CJGE201905023
MA Weijia, CHEN Guoxing, LI Lei, et al. Experimental study on liquefaction characteristics of saturated coral sand in Nansha Islands under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 981-988. (in Chinese) doi: 10.11779/CJGE201905023
|
[2] |
高冉, 叶剑红. 中国南海吹填岛礁钙质砂动力特性试验研究[J]. 岩土力学, 2019, 40(10): 3897-3908, 3919. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201910024.htm
GAO Ran, YE Jianhong. Experimental investigation on the dynamic characteristics of calcareous sand from the reclaimed coral reef islands in the South China Sea[J]. Rock and Soil Mechanics, 2019, 40(10): 3897-3908, 3919. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201910024.htm
|
[3] |
王鸾, 汪云龙, 袁晓铭, 等. 人工场地吹填珊瑚土抗液化强度大粒径动三轴试验研究[J]. 岩土力学, 2021, 42(10): 2819-2829. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202110021.htm
WANG Luan, WANG Yunlong, YUAN Xiaoming, et al. Experimental study on liquefaction resistance of hydraulic fill coralline soils at artificial sites based on large-scale dynamic triaxial apparatus[J]. Rock and Soil Mechanics, 2021, 42(10): 2819-2829. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202110021.htm
|
[4] |
聂庆科, 白冰, 胡建敏, 等. 循环荷载作用下软土的孔压模式和强度特征[J]. 岩土力学, 2007, 28(增刊1): 724-729. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-AGLU200710007148.htm
NIE Qingke, BAI Bing, HU Jianmin, et al. The pore pressure model and undrained shear strength of soft clay under cyclic loading[J]. Rock and Soil Mechanics, 2007, 28(S1): 724-729. (in Chinese) https://cpfd.cnki.com.cn/Article/CPFDTOTAL-AGLU200710007148.htm
|
[5] |
张建民. 砂土动力学若干基本理论探究[J]. 岩土工程学报, 2012, 34(1): 1-50. http://www.cgejournal.com/cn/article/id/14487
ZHANG Jianmin. New advances in basic theories of sand dynamics[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 1-50. (in Chinese) http://www.cgejournal.com/cn/article/id/14487
|
[6] |
孙海妹, 王兰民, 王平, 等. 饱和兰州黄土液化过程中孔压和应变发展的试验研究[J]. 岩土力学, 2010, 31(11): 3464-3468. doi: 10.3969/j.issn.1000-7598.2010.11.018
SUN Haimei, WANG Lanmin, WANG Ping, et al. Experimental study of development of strain and pore water pressure during liquefaction of saturated Lanzhou loess[J]. Rock and Soil Mechanics, 2010, 31(11): 3464-3468. (in Chinese) doi: 10.3969/j.issn.1000-7598.2010.11.018
|
[7] |
徐斌, 孔宪京, 邹德高, 等. 饱和砂砾料振动孔压与轴向应变发展模式研究[J]. 岩土力学, 2006, 27(6): 925-928. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200606014.htm
XU Bin, KONG Xianjing, ZOU Degao, et al. Study of dynamic pore water pressure and axial strain in saturated sand-gravel composites[J]. Rock and Soil Mechanics, 2006, 27(6): 925-928. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200606014.htm
|
[8] |
CHEN G X, ZHAO D F, CHEN W Y, et al. Excess pore-water pressure generation in cyclic undrained testing[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(7): 04019022. doi: 10.1061/(ASCE)GT.1943-5606.0002057
|
[9] |
年廷凯, 焦厚滨, 范宁, 等. 南海北部陆坡软黏土动力应变-孔压特性试验[J]. 岩土力学, 2018, 39(5): 1564-1572, 1580. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201805003.htm
NIAN Tingkai, JIAO Houbin, FAN Ning, et al. Experiment on dynamic strain-pore pressure of soft clay in the northern slope of South China Sea[J]. Rock and Soil Mechanics, 2018, 39(5): 1564-1572, 1580. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201805003.htm
|
[10] |
HYODO M, HYDE A F L, ARAMAKI N. Liquefaction of crushable soils[J]. Géotechnique, 1998, 48(4): 527-543. doi: 10.1680/geot.1998.48.4.527
|
[11] |
刘汉龙, 张宇, 郭伟, 等. 微生物加固钙质砂动孔压模型研究[J]. 岩石力学与工程学报, 2021, 40(4): 790-801. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202104012.htm
LIU Hanlong, ZHANG Yu, GUO Wei, et al. A prediction model of dynamic pore water pressure for MICP-treated calcareous sand[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(4): 790-801. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202104012.htm
|
[12] |
AIREY D W, FAHEY M. Cyclic response of calcareous soil from the North-West Shelf of Australia[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts 1991, 28: 101-121.
|
[13] |
虞海珍, 汪稔. 钙质砂动强度试验研究[J]. 岩土力学, 1999, 20(4): 6-11. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX199904001.htm
YU Haizhen, WANG Ren. The cyclic strength test research on calcareous sand[J]. Rock and Soil Mechanics, 1999, 20(4): 6-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX199904001.htm
|
[14] |
虞海珍, 汪稔, 赵文光, 等. 波浪荷载下钙质砂孔压增长特性的试验研究[J]. 武汉理工大学学报, 2006, 28(11): 86-89. https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY200611025.htm
YU Haizhen, WANG Ren, ZHAO Wenguang, et al. Experimental research on development pattern of pore water pressure of carbonate sand under wave loads[J]. Journal of Wuhan University of Technology, 2006, 28(11): 86-89. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY200611025.htm
|
[15] |
孙吉主, 黄明利, 汪稔. 内孔隙与各向异性对钙质砂液化特性的影响[J]. 岩土力学, 2002, 23(2): 166-169. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200202007.htm
Sun Jizhu, Huang Mingli, Wang Ren. Influence of inner pore and anisotropy on liquefaction characteristics of calcareous sand[J]. Rock and Soil Mechanics, 2002, 23(2): 166-169. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200202007.htm
|
[16] |
马维嘉, 陈国兴, 吴琪. 复杂加载条件下珊瑚砂抗液化强度试验研究[J]. 岩土力学, 2020, 41(2): 535-542, 551. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202002025.htm
MA Weijia, CHEN Guoxing, WU Qi. Experimental study on liquefaction resistance of coral sand under complex loading conditions[J]. Rock and Soil Mechanics, 2020, 41(2): 535-542, 551. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202002025.htm
|
[17] |
王刚, 查京京, 魏星. 循环三轴应力路径下钙质砂颗粒破碎演化规律[J]. 岩土工程学报, 2019, 41(4): 755-760. doi: 10.11779/CJGE201904020
WANG Gang, ZHA Jingjing, WEI Xing. Evolution of particle crushing of carbonate sands under cyclic triaxial stress path[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 755-760. (in Chinese) doi: 10.11779/CJGE201904020
|
[18] |
张家铭, 张凌, 蒋国盛, 等. 剪切作用下钙质砂颗粒破碎试验研究[J]. 岩土力学, 2008, 29(10): 2789-2793. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200810039.htm
ZHANG Jiaming, ZHANG Ling, JIANG Guosheng, et al. Research on particle crushing of calcareous sands under triaxial shear[J]. Rock and Soil Mechanics, 2008, 29(10): 2789-2793. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200810039.htm
|
[19] |
HALL E B, GORDON B B. Triaxial testing with large-scale high pressure equipment[J]. Laboratory Shear Testing of Soils, 1963, 361: 315-328.
|
[20] |
WEI H Z, ZHAO T, HE J Q, et al. Evolution of particle breakage for calcareous sands during ring shear tests[J]. International Journal of Geomechanics, 2018, 18(2): 04017153.
|
[21] |
王艳丽, 饶锡保, 潘家军, 等. 细粒含量对饱和砂土动孔压演化特性的影响[J]. 土木建筑与环境工程, 2011, 33(3): 52-56. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201103010.htm
WANG Yanli, RAO Xibao, PAN Jiajun, et al. Effects of fines content on evolutionary characteristics of dynamic pore water pressure of saturated sands[J]. Journal of Chongqing Jianzhu University, 2011, 33(3): 52-56. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201103010.htm
|
[22] |
曾长女, 刘汉龙, 陈育民. 细粒含量对粉土动孔压发展模式影响的试验研究[J]. 岩土力学, 2008, 29(8): 2193-2198. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200808037.htm
ZENG Changnü, LIU Hanlong, CHEN Yumin. Test study on influence of fine particle content on dynamic pore water pressure development mode of silt[J]. Rock and Soil Mechanics, 2008, 29(8): 2193-2198. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200808037.htm
|
[23] |
吴杨, 崔杰, 李晨, 等. 细粒含量对岛礁吹填珊瑚砂最大动剪切模量影响的试验研究[J]. 岩石力学与工程学报, 2022, 41(1): 205-216. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202201017.htm
WU Yang, CUI Jie, LI Chen, et al. Experimental study on the effect of fines on the maximum dynamic shear modulus of coral sand in a hydraulic fill island-reef[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(1): 205-216. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202201017.htm
|
[24] |
HIGHT D W, GENS A, SYMES M J. The development of a new hollow cylinder apparatus for investigating the effects of principal stress rotation in soils[J]. Géotechnique, 1983, 33(4): 355-383.
|
[25] |
Standard Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density: ASTM D4254—14[S]. Annual Book of ASTM Standards, 2006.
|
[26] |
Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using A Vibratory Table: ASTM D4253—16 [S]. Annual Book of ASTM Standards, 2016.
|
[27] |
SEED H B, LYSMER J, MARTIN P P. Pore-water pressure changes during soil liquefaction[J]. Journal of the Geotechnical Engineering, 1976, 102(4): 323-346.
|
[28] |
LEE K L, ALBAISA A. Earthquake induced settlements in saturated sands[J]. Journal of the Geotechnical Engineering Division, 1974, 100(4): 387-406.
|
[29] |
THEVANAYAGAM S, MARTIN G R. Liquefaction in silty soils-screening and remediation issues[J]. Soil Dynamics & Earthquake Engineering, 2002, 22(9): 1035-1042.
|
[30] |
MOHAMMADI A, QADIMI A. A simple critical state approach to predicting the cyclic and monotonic response of sands with different fines contents using the equivalent intergranular void ratio[J]. Acta Geotechnica, 2015, 10(5): 587-606.
|