• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WU Qi, WANG Luyang, LIU Qifei, ZHOU Zhenglong, MA Weijia, CHEN Guoxing. Experimental study on development model of excess pore pressure for saturated coral sand based on shear strain characteristics[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2091-2099. DOI: 10.11779/CJGE20220956
Citation: WU Qi, WANG Luyang, LIU Qifei, ZHOU Zhenglong, MA Weijia, CHEN Guoxing. Experimental study on development model of excess pore pressure for saturated coral sand based on shear strain characteristics[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2091-2099. DOI: 10.11779/CJGE20220956

Experimental study on development model of excess pore pressure for saturated coral sand based on shear strain characteristics

More Information
  • Received Date: August 03, 2022
  • Available Online: October 16, 2023
  • A series of undrained cyclic torsional shear tests are carried out on the saturated coral sand specimens from Nansha Islands by using the hollow cylinder torsion shear apparatus. The aim of the tests is to investigate the effects of fine contents(FC), relative density (Dr) and applied cyclic stress ratio CSR on the generated excess pore pressure ratio Ru of the specimens. The test results show that: the development rate of Ru-N curve increases with the increasing FC and CSR, but decreases with the increasing Dr. In addition, the development rate of Ru-N curve of the saturated coral sands significantly exceeds that of the terrestrial quartz sands, and the traditional Seed pore pressure model is not fully applicable to characterize the development pattern of the excess pore pressure of coral sands. For the same Dr and FC, Ru of the specimens under different CSR is uniquely related to the shear strain amplitude (γa). A pore pressure evaluation model based on the shear strain characteristics is established, and the analysis shows that the pore pressure model parameter A is a soil-specific constant, and the density-corrected pore pressure model parameter B/(Dr)1.5 has a single negative power function relationship with the equivalent skeleton void ratio esk*.
  • [1]
    马维嘉, 陈国兴, 李磊, 等. 循环荷载下饱和南沙珊瑚砂的液化特性试验研究[J]. 岩土工程学报, 2019, 41(5): 981-988. doi: 10.11779/CJGE201905023

    MA Weijia, CHEN Guoxing, LI Lei, et al. Experimental study on liquefaction characteristics of saturated coral sand in Nansha Islands under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 981-988. (in Chinese) doi: 10.11779/CJGE201905023
    [2]
    高冉, 叶剑红. 中国南海吹填岛礁钙质砂动力特性试验研究[J]. 岩土力学, 2019, 40(10): 3897-3908, 3919. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201910024.htm

    GAO Ran, YE Jianhong. Experimental investigation on the dynamic characteristics of calcareous sand from the reclaimed coral reef islands in the South China Sea[J]. Rock and Soil Mechanics, 2019, 40(10): 3897-3908, 3919. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201910024.htm
    [3]
    王鸾, 汪云龙, 袁晓铭, 等. 人工场地吹填珊瑚土抗液化强度大粒径动三轴试验研究[J]. 岩土力学, 2021, 42(10): 2819-2829. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202110021.htm

    WANG Luan, WANG Yunlong, YUAN Xiaoming, et al. Experimental study on liquefaction resistance of hydraulic fill coralline soils at artificial sites based on large-scale dynamic triaxial apparatus[J]. Rock and Soil Mechanics, 2021, 42(10): 2819-2829. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202110021.htm
    [4]
    聂庆科, 白冰, 胡建敏, 等. 循环荷载作用下软土的孔压模式和强度特征[J]. 岩土力学, 2007, 28(增刊1): 724-729. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-AGLU200710007148.htm

    NIE Qingke, BAI Bing, HU Jianmin, et al. The pore pressure model and undrained shear strength of soft clay under cyclic loading[J]. Rock and Soil Mechanics, 2007, 28(S1): 724-729. (in Chinese) https://cpfd.cnki.com.cn/Article/CPFDTOTAL-AGLU200710007148.htm
    [5]
    张建民. 砂土动力学若干基本理论探究[J]. 岩土工程学报, 2012, 34(1): 1-50. http://www.cgejournal.com/cn/article/id/14487

    ZHANG Jianmin. New advances in basic theories of sand dynamics[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 1-50. (in Chinese) http://www.cgejournal.com/cn/article/id/14487
    [6]
    孙海妹, 王兰民, 王平, 等. 饱和兰州黄土液化过程中孔压和应变发展的试验研究[J]. 岩土力学, 2010, 31(11): 3464-3468. doi: 10.3969/j.issn.1000-7598.2010.11.018

    SUN Haimei, WANG Lanmin, WANG Ping, et al. Experimental study of development of strain and pore water pressure during liquefaction of saturated Lanzhou loess[J]. Rock and Soil Mechanics, 2010, 31(11): 3464-3468. (in Chinese) doi: 10.3969/j.issn.1000-7598.2010.11.018
    [7]
    徐斌, 孔宪京, 邹德高, 等. 饱和砂砾料振动孔压与轴向应变发展模式研究[J]. 岩土力学, 2006, 27(6): 925-928. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200606014.htm

    XU Bin, KONG Xianjing, ZOU Degao, et al. Study of dynamic pore water pressure and axial strain in saturated sand-gravel composites[J]. Rock and Soil Mechanics, 2006, 27(6): 925-928. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200606014.htm
    [8]
    CHEN G X, ZHAO D F, CHEN W Y, et al. Excess pore-water pressure generation in cyclic undrained testing[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(7): 04019022. doi: 10.1061/(ASCE)GT.1943-5606.0002057
    [9]
    年廷凯, 焦厚滨, 范宁, 等. 南海北部陆坡软黏土动力应变-孔压特性试验[J]. 岩土力学, 2018, 39(5): 1564-1572, 1580. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201805003.htm

    NIAN Tingkai, JIAO Houbin, FAN Ning, et al. Experiment on dynamic strain-pore pressure of soft clay in the northern slope of South China Sea[J]. Rock and Soil Mechanics, 2018, 39(5): 1564-1572, 1580. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201805003.htm
    [10]
    HYODO M, HYDE A F L, ARAMAKI N. Liquefaction of crushable soils[J]. Géotechnique, 1998, 48(4): 527-543. doi: 10.1680/geot.1998.48.4.527
    [11]
    刘汉龙, 张宇, 郭伟, 等. 微生物加固钙质砂动孔压模型研究[J]. 岩石力学与工程学报, 2021, 40(4): 790-801. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202104012.htm

    LIU Hanlong, ZHANG Yu, GUO Wei, et al. A prediction model of dynamic pore water pressure for MICP-treated calcareous sand[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(4): 790-801. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202104012.htm
    [12]
    AIREY D W, FAHEY M. Cyclic response of calcareous soil from the North-West Shelf of Australia[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts 1991, 28: 101-121.
    [13]
    虞海珍, 汪稔. 钙质砂动强度试验研究[J]. 岩土力学, 1999, 20(4): 6-11. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX199904001.htm

    YU Haizhen, WANG Ren. The cyclic strength test research on calcareous sand[J]. Rock and Soil Mechanics, 1999, 20(4): 6-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX199904001.htm
    [14]
    虞海珍, 汪稔, 赵文光, 等. 波浪荷载下钙质砂孔压增长特性的试验研究[J]. 武汉理工大学学报, 2006, 28(11): 86-89. https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY200611025.htm

    YU Haizhen, WANG Ren, ZHAO Wenguang, et al. Experimental research on development pattern of pore water pressure of carbonate sand under wave loads[J]. Journal of Wuhan University of Technology, 2006, 28(11): 86-89. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY200611025.htm
    [15]
    孙吉主, 黄明利, 汪稔. 内孔隙与各向异性对钙质砂液化特性的影响[J]. 岩土力学, 2002, 23(2): 166-169. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200202007.htm

    Sun Jizhu, Huang Mingli, Wang Ren. Influence of inner pore and anisotropy on liquefaction characteristics of calcareous sand[J]. Rock and Soil Mechanics, 2002, 23(2): 166-169. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200202007.htm
    [16]
    马维嘉, 陈国兴, 吴琪. 复杂加载条件下珊瑚砂抗液化强度试验研究[J]. 岩土力学, 2020, 41(2): 535-542, 551. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202002025.htm

    MA Weijia, CHEN Guoxing, WU Qi. Experimental study on liquefaction resistance of coral sand under complex loading conditions[J]. Rock and Soil Mechanics, 2020, 41(2): 535-542, 551. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202002025.htm
    [17]
    王刚, 查京京, 魏星. 循环三轴应力路径下钙质砂颗粒破碎演化规律[J]. 岩土工程学报, 2019, 41(4): 755-760. doi: 10.11779/CJGE201904020

    WANG Gang, ZHA Jingjing, WEI Xing. Evolution of particle crushing of carbonate sands under cyclic triaxial stress path[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 755-760. (in Chinese) doi: 10.11779/CJGE201904020
    [18]
    张家铭, 张凌, 蒋国盛, 等. 剪切作用下钙质砂颗粒破碎试验研究[J]. 岩土力学, 2008, 29(10): 2789-2793. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200810039.htm

    ZHANG Jiaming, ZHANG Ling, JIANG Guosheng, et al. Research on particle crushing of calcareous sands under triaxial shear[J]. Rock and Soil Mechanics, 2008, 29(10): 2789-2793. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200810039.htm
    [19]
    HALL E B, GORDON B B. Triaxial testing with large-scale high pressure equipment[J]. Laboratory Shear Testing of Soils, 1963, 361: 315-328.
    [20]
    WEI H Z, ZHAO T, HE J Q, et al. Evolution of particle breakage for calcareous sands during ring shear tests[J]. International Journal of Geomechanics, 2018, 18(2): 04017153.
    [21]
    王艳丽, 饶锡保, 潘家军, 等. 细粒含量对饱和砂土动孔压演化特性的影响[J]. 土木建筑与环境工程, 2011, 33(3): 52-56. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201103010.htm

    WANG Yanli, RAO Xibao, PAN Jiajun, et al. Effects of fines content on evolutionary characteristics of dynamic pore water pressure of saturated sands[J]. Journal of Chongqing Jianzhu University, 2011, 33(3): 52-56. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201103010.htm
    [22]
    曾长女, 刘汉龙, 陈育民. 细粒含量对粉土动孔压发展模式影响的试验研究[J]. 岩土力学, 2008, 29(8): 2193-2198. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200808037.htm

    ZENG Changnü, LIU Hanlong, CHEN Yumin. Test study on influence of fine particle content on dynamic pore water pressure development mode of silt[J]. Rock and Soil Mechanics, 2008, 29(8): 2193-2198. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200808037.htm
    [23]
    吴杨, 崔杰, 李晨, 等. 细粒含量对岛礁吹填珊瑚砂最大动剪切模量影响的试验研究[J]. 岩石力学与工程学报, 2022, 41(1): 205-216. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202201017.htm

    WU Yang, CUI Jie, LI Chen, et al. Experimental study on the effect of fines on the maximum dynamic shear modulus of coral sand in a hydraulic fill island-reef[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(1): 205-216. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202201017.htm
    [24]
    HIGHT D W, GENS A, SYMES M J. The development of a new hollow cylinder apparatus for investigating the effects of principal stress rotation in soils[J]. Géotechnique, 1983, 33(4): 355-383.
    [25]
    Standard Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density: ASTM D4254—14[S]. Annual Book of ASTM Standards, 2006.
    [26]
    Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using A Vibratory Table: ASTM D4253—16 [S]. Annual Book of ASTM Standards, 2016.
    [27]
    SEED H B, LYSMER J, MARTIN P P. Pore-water pressure changes during soil liquefaction[J]. Journal of the Geotechnical Engineering, 1976, 102(4): 323-346.
    [28]
    LEE K L, ALBAISA A. Earthquake induced settlements in saturated sands[J]. Journal of the Geotechnical Engineering Division, 1974, 100(4): 387-406.
    [29]
    THEVANAYAGAM S, MARTIN G R. Liquefaction in silty soils-screening and remediation issues[J]. Soil Dynamics & Earthquake Engineering, 2002, 22(9): 1035-1042.
    [30]
    MOHAMMADI A, QADIMI A. A simple critical state approach to predicting the cyclic and monotonic response of sands with different fines contents using the equivalent intergranular void ratio[J]. Acta Geotechnica, 2015, 10(5): 587-606.

Catalog

    Article views (246) PDF downloads (76) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return