• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Luyang, WU Qi, ZHOU Zhenglong, ZHANG Xinlei, WANG Binghui, CHEN Guoxing. Experimental study on development patterns of volumetric strain and predictive modeling for saturated coral sands[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1965-1973. DOI: 10.11779/CJGE20230522
Citation: WANG Luyang, WU Qi, ZHOU Zhenglong, ZHANG Xinlei, WANG Binghui, CHEN Guoxing. Experimental study on development patterns of volumetric strain and predictive modeling for saturated coral sands[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1965-1973. DOI: 10.11779/CJGE20230522

Experimental study on development patterns of volumetric strain and predictive modeling for saturated coral sands

More Information
  • Received Date: June 07, 2023
  • Available Online: March 24, 2024
  • The coral sand has better drainage conditions, and the drainage deformation of the saturated coral sand under earthquake and wave loads can easily cause damage to the seabed and nearby structures. Focusing on the properties of the saturated coral sand and by investigating the effects of fines content FC, relative density Dr and cyclic stress ratio CSR on its deformation characteristics, a series of cyclic drainage loading tests are carried out on the specimens of Nansha islands using the GDS dynamic triaxial instrument. The test results show that the development rate and the degree of deformation of cumulative volumetric strain εvp of the coral sand increase with the increase of FC and CSR, and decrease with the increase of Dr. The εvp-N relationship curve of the saturated coral sand shows two development modes, cyclic smoothness and cyclic creep. The potential damage factor DP is introduced to characterize the influences of FC on the development pattern of εvp, and a DP×CSR-Dr framework is established to evaluate the development patterns of its volumetric strain. To characterize the effects of FC and Dr on its εvp-N relationship curve, the equivalent skeleton void ratio esk* is introduced, and it is found that there is a good correlation between εvp-s and esk* under both development modes, thus, a model for the development of volumetric strain in the saturated coral sand under drainage cyclic loading conditions is established, which can well predict the development patterns of volumetric strain in the saturated coral sand.
  • [1]
    DING Z, HE S H, SUN Y F, et al. Comparative study on cyclic behavior of marine calcareous sand and terrigenous siliceous sand for transportation infrastructure applications[J]. Construction and Building Materials, 2021, 283: 122740. doi: 10.1016/j.conbuildmat.2021.122740
    [2]
    文兵, 袁内镇, 孔令伟, 等. 吹填珊瑚砂场地高层建筑复合地基工程实践与沉降估算[J]. 土木工程学报, 2021, 54(12): 85-93. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202112009.htm

    WEN Bing, YUAN Neizhen, KONG Lingwei, et al. Application practice and settlement estimation of composite ground for high-rise buildings on coral sand site of hydraulic fill[J]. China Civil Engineering Journal, 2021, 54(12): 85-93. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202112009.htm
    [3]
    张勇, 孔令伟, 郭爱国, 等. 循环荷载下饱和软黏土的累积塑性应变试验研究[J]. 岩土力学, 2009, 30(6): 1542-1548. doi: 10.3969/j.issn.1000-7598.2009.06.002

    ZHANG Yong, KONG Lingwei, GUO Aiguo, et al. Cumulative plastic strain of saturated soft clay under cyclic loading[J]. Rock and Soil Mechanics, 2009, 30(6): 1542-1548. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.06.002
    [4]
    陈颖平, 黄博, 陈云敏. 循环荷载作用下软黏土不排水累积变形特性[J]. 岩土工程学报, 2008, 30(5): 764-768. doi: 10.3321/j.issn:1000-4548.2008.05.024

    CHEN Yingping, HUANG Bo, CHEN Yunmin. Reliability analysis of high level backfill based on chaotic optimization[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(5): 764-768. (in Chinese) doi: 10.3321/j.issn:1000-4548.2008.05.024
    [5]
    CAO Z G, CHEN J Y, CAI Y Q, et al. Long-term behavior of clay-fouled unbound granular materials subjected to cyclic loadings with different frequencies[J]. Engineering Geology, 2018, 243: 118-127. doi: 10.1016/j.enggeo.2018.06.019
    [6]
    LI Q L, XIAN Z N, WANG L N, et al. Accumulative strain of clays in cold region under long-term low-level repeated cyclic loading: Experimental evidence and accumulation model[J]. Cold Regions Science and Technology, 2013, 94: 45-52. doi: 10.1016/j.coldregions.2013.06.008
    [7]
    赵凯, 吴琪, 熊浩, 等. 双向耦合循环剪切条件下饱和砂土体应变发展规律试验研究[J]. 岩土工程学报, 2019, 41(7): 1260-1269. doi: 10.11779/CJGE201907010

    ZHAO Kai, WU Qi, XIONG Hao, et al. Experimental investigations on volumetric strain behavior of saturated sands under bi-directional cyclic loadings[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1260-1269. (in Chinese) doi: 10.11779/CJGE201907010
    [8]
    NONG Z Z, PARK S S. Effect of loading frequency on volumetric strain accumulation and stiffness improvement in sand under drained cyclic direct simple shear tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(12): 04021159. doi: 10.1061/(ASCE)GT.1943-5606.0002706
    [9]
    王刚, 查京京, 魏星. 循环三轴应力路径下钙质砂颗粒破碎演化规律[J]. 岩土工程学报, 2019, 41(4): 755-760. doi: 10.11779/CJGE201904020

    WANG Gang, ZHA Jingjing, WEI Xing. Evolution of particle crushing of carbonate sands under cyclic triaxial stress path[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 755-760. (in Chinese) doi: 10.11779/CJGE201904020
    [10]
    WEI H Z, ZHAO T, HE J Q, et al. Evolution of particle breakage for calcareous sands during ring shear tests[J]. International Journal of Geomechanics, 2018, 18(2): 04017153. doi: 10.1061/(ASCE)GM.1943-5622.0001073
    [11]
    PENG Y, LIU H L, LI C, et al. The detailed particle breakage around the pile in coral sand[J]. Acta Geotechnica, 2021, 16(6): 1971-1981. doi: 10.1007/s11440-020-01089-2
    [12]
    YEE E, DUKU P M, STEWART J P. Cyclic volumetric strain behavior of sands with fines of low plasticity[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 140(4): 4013042.
    [13]
    INDRARATNA B, TENNAKOON N, NIMBALKAR S, et al. Behaviour of clay-fouled ballast under drained triaxial testing[J]. Géotechnique, 2013, 63(5): 410-419. doi: 10.1680/geot.11.P.086
    [14]
    胡明鉴, 崔翔, 王新志, 等. 细颗粒对钙质砂渗透性的影响试验研究[J]. 岩土力学, 2019, 40(8): 2925-2930. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201908006.htm

    HU Mingjian, CUI Xiang, WANG Xinzhi, et al. Experimental study of the effect of fine particles on permeability of the calcareous sand[J]. Rock and Soil Mechanics, 2019, 40(8): 2925-2930. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201908006.htm
    [15]
    SUN Y F, GAO Y F, YANG S. Mathematical aspect of the state-dependent stress–dilatancy of granular soil under triaxial loading[J]. Géotechnique, 2019, 69(2): 158-165. doi: 10.1680/jgeot.17.T.029
    [16]
    SUN Y F, SUMELKA W, GAO Y F, et al. Phenomenological fractional stress–dilatancy model for granular soil and soil-structure interface under monotonic and cyclic loads[J]. Acta Geotechnica, 2021, 16(10): 3115-3132. doi: 10.1007/s11440-021-01190-0
    [17]
    马维嘉, 陈国兴, 秦悠, 等. 初始主应力方向角对饱和珊瑚砂液化特性影响的试验[J]. 岩土工程学报, 2020, 42(3): 592-600. doi: 10.11779/CJGE202003022

    MA Weijia, CHEN Guoxing, QIN You, et al. Experimental studies on effects of initial major stress direction angles on liquefaction characteristics of saturated coral sand[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 592-600. (in Chinese) doi: 10.11779/CJGE202003022
    [18]
    高冉, 叶剑红. 中国南海吹填岛礁钙质砂动力特性试验研究[J]. 岩土力学, 2019, 40(10): 3897-3908, 3919. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201910024.htm

    GAO Ran, YE Jianhong. Experimental investigation on the dynamic characteristics of calcareous sand from the reclaimed coral reef islands in the South China Sea[J]. Rock and Soil Mechanics, 2019, 40(10): 3897-3908, 3919. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201910024.htm
    [19]
    王鸾, 汪云龙, 袁晓铭, 等. 人工场地吹填珊瑚土抗液化强度大粒径动三轴试验研究[J]. 岩土力学, 2021, 42(10): 2819-2829. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202110021.htm

    WANG Luan, WANG Yunlong, YUAN Xiaoming, et al. Experimental study on liquefaction resistance of hydraulic fill coralline soils at artificial sites based on large-scale dynamic triaxial apparatus[J]. Rock and Soil Mechanics, 2021, 42(10): 2819-2829. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202110021.htm
    [20]
    汪稔, 吴文娟. 珊瑚礁岩土工程地质的探索与研究: 从事珊瑚礁研究30年[J]. 工程地质学报, 2019, 27(1): 202-207. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201901022.htm

    WANG Ren, WU Wenjuan. Exploration and research on engineering geological properties of coral reefs—engaged in coral reef research for 30 years[J]. Journal of Engineering Geology, 2019, 27(1): 202-207. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201901022.htm
    [21]
    HE S H, DING Z, SUN Y F, et al. Cumulative deformations and particle breakage in calcareous sand subjected to drained high-cyclic loading: experimental investigation[J]. Soil Dynamics and Earthquake Engineering, 2022, 161: 107417. doi: 10.1016/j.soildyn.2022.107417
    [22]
    秦悠, 马维嘉, 赵凯, 等. 不同循环应力路径下饱和珊瑚砂体应变的发展特征[J]. 岩土工程学报, 2023, 45(6): 1294-1302. doi: 10.11779/CJGE20220340

    QIN You, MA Weijia, ZHAO Kai, et al. Volumetric strain generation of saturated coral sand subjected to various stress paths of cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1294-1302. (in Chinese) doi: 10.11779/CJGE20220340
    [23]
    土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.

    Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
    [24]
    张建民. 砂土动力学若干基本理论探究[J]. 岩土工程学报, 2012, 34(1): 1-50. http://cge.nhri.cn/article/id/14487

    ZHANG Jianmin. New advances in basic theories of sand dynamics[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 1-50. (in Chinese) http://cge.nhri.cn/article/id/14487
    [25]
    TATEK F Y, BJORN B, DENIS J. Packing theory-based framework to evaluate permanent deformation of unbound granular materials[J]. International Journal of Pavement Engineering, 2014, 14(3): 309-320.
    [26]
    MOHAMMADI A, QADIMI A. A simple critical state approach to predicting the cyclic and monotonic response of sands with different fines contents using the equivalent intergranular void ratio[J]. Acta Geotechnica, 2015, 10(5): 587-606. doi: 10.1007/s11440-014-0318-z
  • Related Articles

    [1]A study of multi-field coupling continuum numerical method for exploiting CH4 by CO2 replacement in deep-sea formation[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240762
    [2]ZHU Ziyi, REN Lei, GAO Guoyao, GUO Wei, REN Yuxiao, FENG Shouzhong, ZHU Xianpeng. Multi-field coupling theoretical model for artificial freezing of coastal soils under seepage[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 171-176. DOI: 10.11779/CJGE2024S20031
    [3]ZHAO Jingbo, CAO Shengfei, LI Jiebiao, CHEN Liang, COLLIN Frederic, LIU Yuemiao, ZHANG Qi. Numerical simulation of coupled thermo-hydro-mechanical (THM) behavior of buffer material in the China-Mock-up tests at engineering scale[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1712-1722. DOI: 10.11779/CJGE20230679
    [4]LU Shifeng, FENG Shijin. Multi-field coupled model for solid-phase degradable soils and its numerical implementation using finite volume method[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1438-1450. DOI: 10.11779/CJGE20220486
    [5]LING Xian-zhang, LUO Jun, GENG Lin, TANG Liang. Coupled hydro-thermo-deformation frost heave model for unsaturated expansive soils in seasonally frozen soil regions[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(7): 1255-1265. DOI: 10.11779/CJGE202207006
    [6]ZHAO Chang, HE Xiang, HU Ran, LIU Han-long, XIE Qiang, WANG Yu-ze, WU Huan-ran, XIAO Yang. Kinetic theory and numerical simulation of biomineralization[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1096-1105. DOI: 10.11779/CJGE202206014
    [7]HAN Bo-wen, CAI Guo-qing, LI Jian, ZHAO Cheng-gang. Hydro-mechanical coupling bounding surface model for unsaturated soils considering bonding effect of particles[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2059-2068. DOI: 10.11779/CJGE202011011
    [8]LIU Wu. Coupled damage and friction model for persistent fractured rocks considering multi-scale structures[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 147-154. DOI: 10.11779/CJGE201801015
    [9]JIANG Ming-jing, ZHANG Fu-guang, SUN Yu-gang, ZHANG Wang-cheng. DEM simulation of mechanical behaviour and bond breakage of different cemented sands[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 1969-1976.
    [10]PENG Peng, SHAN Zhi-gang, SONG Han-zhou, DONG Yu-fan. Coupling model for assessing anti-seepage behaviors of curtain of dam foundation[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1847-1853.

Catalog

    Article views (322) PDF downloads (57) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return