• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Wu. Coupled damage and friction model for persistent fractured rocks considering multi-scale structures[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 147-154. DOI: 10.11779/CJGE201801015
Citation: LIU Wu. Coupled damage and friction model for persistent fractured rocks considering multi-scale structures[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 147-154. DOI: 10.11779/CJGE201801015

Coupled damage and friction model for persistent fractured rocks considering multi-scale structures

More Information
  • Received Date: October 23, 2016
  • Published Date: January 24, 2018
  • A coupled damage and friction constitutive model for persistent jointed rocks based on a two-step homogenization technique is proposed considering the influences of anisotropic damage growth of intact rocks, mobilized dilatancy behavior of microcracks, recovery of normal stiffness due to normal closure of closed microcracks, mobilized degradation of multi-order asperities of joints, shear dilatancy of joints, and interaction between joints and rocks. The effects of multi-scale structures (i.e., joint and microcracks) on the deformation characteristics of fractured rocks are better addressed by the proposed model. The existing laboratory triaxial compression tests on crystalline rocks, shear tests on joint specimens, together with triaxial compressive strength tests on Martinsburg slate under different confining pressures and joint configurations, are used to validate the proposed model. The good agreements between the model predictions and the test results demonstrate the accuracy of the proposed model.
  • [1]
    陈益峰, 李典庆, 荣冠, 等. 脆性岩石损伤与热传导特性的细观力学模型[J]. 岩石力学与工程学报, 2011, 30(10): 1959-1969.
    (CHEN Yi-feng, LI Dian-qing, RONG Guan, et al.A micromechanical model for damage and thermal conductivity of brittle rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(10): 1959-1969. (in Chinese))
    [2]
    ZHU Q Z, KONDO D, SHAO J F.Micromechanical analysis of coupling between anisotropic damage and friction in quasi brittle materials: Role of the homogenization scheme[J]. International Journal of Solids and Structures, 2008, 45(5): 1385-1405.
    [3]
    ZHU Q Z, KONDO D, SHAO J F, et al.Micromechanical modelling of anisotropic damage in brittle rocks and application[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(4): 467-477.
    [4]
    陈益峰, 胡冉, 周创兵, 等. 热-水-力耦合作用下结晶岩渗透特性演化模型[J]. 岩石力学与工程学报, 2013, 32(11): 2185-2195.
    (CHEN Yi-feng, HU Ran, ZHOU Chuang-bing, et al.A micromechanical model for damage and thermal conductivity of brittle rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(11): 2185-2195. (in Chinese))
    [5]
    周创兵, 陈益峰, 姜清辉, 等. 岩体结构面HM耦合分析的界面层模型[J]. 岩石力学与工程学报, 2008, 27(6): 1081-1093.
    (ZHOU Chuang-bing, CHEN Yi-feng, JIANG Qing-hui, et al.An interfacial layer model for coupled hydromechanical analysis in geological discontinuities[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(6): 1081-1093. (in Chinese))
    [6]
    BANDIS S C, LUMSDEN A C, BARTON N R.Fundamentals of rock joint deformation[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1983, 20(6): 249-268.
    [7]
    PLESHA M E.Constitutive models for rock discontinuities with dilatancy and surface degradation[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1987, 11(4): 345-362.
    [8]
    DONG J J, PAN Y W.A hierarchical model of rough rock joints based on micromechanics[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1996, 33(2): 111-123.
    [9]
    LEE H S, PARK Y J, CHOC T F, et al.Influence of asperity degradation on the mechanical behavior of rough rock joints under cyclic shear loading[J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(7): 967-980.
    [10]
    陈益峰, 周创兵, 盛永清. 应变敏感的裂隙及裂隙岩体水力传导特性研究[J]. 岩石力学与工程学报, 2006, 25(12): 2441-2452.
    (CHEN Yi-feng, ZHOU Chuang-bing, SHENG Yong-qing.Strain-dependent hydraulic conductivity for single rock fracture and fractured rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(12): 2441-2452. (in Chinese))
    [11]
    CAI M, HORII H.A constitutive model of highly jointed rock masses[J]. Mechanics of Materials, 1992, 13(3): 217-246.
    [12]
    朱维申, 张强勇. 节理岩体脆弹性断裂损伤模型及其工程应用[J]. 岩石力学与工程学报, 1999, 18(3): 245-249.
    (ZHU Wei-shen, ZHANG Qiang-yong.Brittle elastic fracture damage constitutive model of jointed rock mass and its application to engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 1999, 18(3): 245-249. (in Chinese))
    [13]
    袁小清, 刘红岩, 刘京平. 非贯通裂隙岩体三维复合损伤本构模型[J]. 岩土工程学报, 2016, 38(1): 91-99.
    (YUAN Xiao-qing, LIU Hong-yan, LIU Jing-ping.3-D constitutive model for rock masses with non-persistent joints based on compound damage[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 91-99. (in Chinese))
    [14]
    CHEN Y, HU S, ZHOU C, et al.Micromechanical modeling of anisotropic damage-induced permeability variation in crystalline rocks. Rock Mechanics and Rock Engineering 2014, 47(5): 1775-1791.
    [15]
    DONATH F A.Strength variation and deformational behavior in anisotropic rock[C]// JUDD W R ed. State of Stress in the Earth’s Crust. NewYork: Elsevier, 1964: 281-297.
    [16]
    DORMIEUX L, KONDO D, Ulm F-J.Microporomechanics[M]. New York: Wiley, 2006.
    [17]
    ZHU Q Z, SHAO J F.A refined micromechanical damage-friction model with strength prediction for rock-like materials under compression[J]. International Journal of Solids and Structures, 2015, 60: 75-83.
    [18]
    李银平, 王元汉, 陈龙珠, 等. 含预制裂纹大理岩的压剪试验分析[J]. 岩土工程学报, 2004, 26(1): 120-124.
    (LI Yin-ping, WANG Yuan-han, CHEN Long-zhu, et al.Experimental research on pre-existing cracks in marble under compression[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 120-124. (in Chinese))
    [19]
    ZHANG X P, LIU Q, WU S, et al.Crack coalescence between two non-parallel flaws in rock-like material under uniaxial compression[J]. Engineering Geology, 2015, 199: 74-90.
    [20]
    WONG R H C, LIN P. Numerical study of stress distribution and crack coalescence mechanisms of a solid containing multiple holes[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 79: 41-54.
    [21]
    ASADI M, BAGHERIPOUR M H.Modified criteria for sliding and non-sliding failure of anisotropic jointed rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 73(1): 95-101.
    [22]
    PIETRUSZCZAK S, LYDZBA D, SHAO J F.Modelling of inherent anisotropy in sedimentary rocks[J]. International Journal of Solids and Structures, 2002, 39(3): 637-648.
    [23]
    PIETRUSZCZAK S, MROZ Z.Formulation of anisotropic failure criteria incorporating a microstructure tensor[J]. Computers and Geotechnics, 2000, 26(2): 105-112.
    [24]
    BAZANT Z P, OH B H.Efficient numerical integration on the surface of a sphere[J]. ZAMM, 1986, 66(1): 37-49.
  • Related Articles

    [1]TIAN Ning, CHEN Jian, YOU Wei-jun, HUANG Jue-hao, ZHANG Jiang-xiong, YI Shun, FU Xiao-dong, TIAN Kai-wei. Simulation of undrained shear strength by rotated anisotropy with non-stationary random field[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 92-95. DOI: 10.11779/CJGE2021S2022
    [2]WANG Xing, KONG Liang, LI Xue-feng. Generalized non-coaxial theory based on orthogonal decomposition of stress rate[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2180-2189. DOI: 10.11779/CJGE202112004
    [3]CHEN Zhou-quan, HUANG Mao-song. Constitutive modeling of anisotropic and non-coaxial behaviors of sand[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 243-251. DOI: 10.11779/CJGE201802004
    [4]LIU Yun-fang, LIU Yuan-kun, XU Jing. Complex function method of stress back analysis for a non-circular underground opening[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1925-1930.
    [5]RUI Rui, XIA Yuan-you, GU Jin-cai, CHEN Chen. Non-uniform shear stress design method for pressure-dispersive anchors[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1262-1270.
    [6]Analytical solution for consolidation of sand-drained ground under non-uniform distribution of initial excess pore water pressure and variation of permeability coefficient in smear zone[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1).
    [7]GAO Feng. Influence of static stress fields on vibration responses of a tunnel subjected to train loading[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(7): 1105-1109.
    [8]LIU Ganbin, XIE Kanghe, SHI Zuyuan, XU Yang. Analysis of stress and displacement around a deep circular tunnel in transversely isotropic soil[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(6): 727-731.
    [9]Pan Yishan, Zhang Mengtao, Li Guozhen. Analysis on Circular Chamber Rockburst by Dynamic Stability Criterion[J]. Chinese Journal of Geotechnical Engineering, 1993, 15(5): 59-66.
    [10]Song Xitai. Analysis of Plastic Backpacking Effect in Underground Circular Tunneling[J]. Chinese Journal of Geotechnical Engineering, 1989, 11(2): 64-74.
  • Cited by

    Periodical cited type(3)

    1. 孔祥辉,梁允鹏,崔帅,王潇康,张思峰. 活性MgO碳化固化疏浚底泥的影响因素及作用机理. 建筑材料学报. 2024(07): 620-628 .
    2. 殷皓,娄伟,王琳玲,陈静,周自力,曹亚锋,卢琦. 高炉矿渣与磷酸盐复配材料对Cu、Pb、Zn污染土壤的钝化效果研究. 绿色矿冶. 2024(04): 78-84 .
    3. 吴涵,郭宇,兰安栋,杨秀娟. 木质素磺酸钙对Pb~(2+)污染土固化效果的研究. 四川水泥. 2022(04): 54-56+59 .

    Other cited types(7)

Catalog

    Article views (461) PDF downloads (282) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return