Citation: | WU Qi, YANG Zheng-tao, LIU Kang, CHEN Guo-xing. Experimental study on influences of fines content on dynamic deformation characteristics of saturated coral sand[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1386-1396. DOI: 10.11779/CJGE202208003 |
[1] |
刘汉龙, 张宇, 郭伟, 等. 微生物加固钙质砂动孔压模型研究[J]. 岩石力学与工程学报, 2021, 40(4): 790-801. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202104012.htm
LIU Han-long, ZHANG Yu, GUO Wei, et al. A prediction model of dynamic pore water pressure for MICP-treated calcareous sand[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(4): 790-801. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202104012.htm
|
[2] |
袁晓铭, 张文彬, 段志刚, 等. 珊瑚土工程场地地震液化特征解析[J]. 岩石力学与工程学报, 2019, 38(增刊2): 3799-3811. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S2056.htm
YUAN Xiao-ming, ZHANG Wen-bin, DUAN Zhi-gang, et al. Analysis for characteristics of seismic liquefaction in engineering sites of coralline soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S2): 3799-3811. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S2056.htm
|
[3] |
刘鑫, 李飒, 刘小龙, 等. 南海钙质砂的动剪切模量与阻尼比试验研究[J]. 岩土工程学报, 2019, 41(9): 1773-1780. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201909027.htm
LIU Xin, LI Sa, LIU Xiao-long, et al. Experimental study on dynamic shear modulus and damping ratio of calcareous sands in the South China Sea[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1773-1780. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201909027.htm
|
[4] |
PANDO M A, SANDOVAL E A, CATANO J. Liquefaction susceptibility and dynamic properties of calcareous sands from Cabo Rojo, Puerto Rico[C]// Proceedings of the 15th World Conference on Earthquake Engineering. Lisbon, 2012.
|
[5] |
CARRARO J, BORTOLOTTO M. Stiffness degradation and damping of carbonate and silica sands[M]//Frontiers in Offshore Geotechnics III. Boca Raton: CRC Press, 2015: 1179-1183.
|
[6] |
CATANO J, PANDO M A. Static and dynamic properties of a calcareous sand from southwest Puerto Rico[C]// GeoFlorida 2010. Orlando, 2010.
|
[7] |
JAFARIAN Y, JAVDANIAN H. Dynamic properties of calcareous sand from the Persian Gulf in comparison with siliceous sands database[J]. International Journal of Civil Engineering, 2020, 18(2): 245-249. doi: 10.1007/s40999-019-00402-9
|
[8] |
PHAM H H G, VANI P O V, IMPE W V, et al. Effects of grain size distribution on the initial strain shear modulus of calcareous sand[C]// 16th Geotechnical Engineering for Infrastructure and Development. ICE Publishing, 2015: 3177-3182.
|
[9] |
梁珂, 陈国兴, 杭天柱, 等. 砂类土最大动剪切模量的新预测模型[J]. 岩土力学, 2020, 41(6): 1963-1970, 1982. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202006020.htm
LIANG Ke, CHEN Guo-xing, HANG Tian-zhu, et al. A new prediction model of small-strain shear modulus of sandy soils[J]. Rock and Soil Mechanics, 2020, 41(6): 1963-1970, 1982. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202006020.htm
|
[10] |
MORSY A M, SALEM M A, ELMAMLOUK H H. Evaluation of dynamic properties of calcareous sands in Egypt at small and medium shear strain ranges[J]. Soil Dynamics and Earthquake Engineering, 2019, 116: 692-708. doi: 10.1016/j.soildyn.2018.09.030
|
[11] |
高冉, 叶剑红. 中国南海吹填岛礁钙质砂动力特性试验研究[J]. 岩土力学, 2019, 40(10): 3897-3908, 3919. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201910024.htm
GAO Ran, YE Jian-hong. Experimental investigation on the dynamic characteristics of calcareous sand from the reclaimed coral reef Islands in the South China Sea[J]. Rock and Soil Mechanics, 2019, 40(10): 3897-3908, 3919. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201910024.htm
|
[12] |
梁珂, 何杨, 陈国兴. 南沙珊瑚砂的动剪切模量和阻尼比特性试验研究[J]. 岩土力学, 2020, 41(1): 23-31, 38. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202001004.htm
LIANG Ke, HE Yang, CHEN Guo-xing. Experimental study of dynamic shear modulus and damping ratio characteristics of coral sand from Nansha Islands[J]. Rock and Soil Mechanics, 2020, 41(1): 23-31, 38. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202001004.htm
|
[13] |
梁珂, 陈国兴, 何杨, 等. 基于相关函数理论的动模量和阻尼比计算新方法[J]. 岩土力学, 2019, 40(4): 1368-1376, 1386. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201904016.htm
LIANG Ke, CHEN Guo-xing, HE Yang, et al. A new method for calculation of dynamic modulus and damping ratio based on theory of correlation function[J]. Rock and Soil Mechanics, 2019, 40(4): 1368-1376, 1386. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201904016.htm
|
[14] |
史金权, 肖杨, 刘汉龙, 等. 钙质砂小应变初始剪切模量试验研究[J]. 岩土工程学报, 2022, 44(2): 324-333. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202202014.htm
SHI Jin-quan, XIAO Yang, LIU Han-long, et al. Experimental study on small-strain shear modulus of calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 324-333. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202202014.htm
|
[15] |
王刚, 查京京, 魏星. 循环三轴应力路径下钙质砂颗粒破碎演化规律[J]. 岩土工程学报, 2019, 41(4): 755-760. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904025.htm
WANG Gang, ZHA Jing-jing, WEI Xing. Evolution of particle crushing of carbonate sands under cyclic triaxial stress path[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 755-760. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904025.htm
|
[16] |
张家铭, 张凌, 蒋国盛, 等. 剪切作用下钙质砂颗粒破碎试验研究[J]. 岩土力学, 2008, 29(10): 2789-2793. doi: 10.3969/j.issn.1000-7598.2008.10.037
ZHANG Jia-ming, ZHANG Ling, JIANG Guo-sheng, et al. Research on particle crushing of calcareous sands under triaxial shear[J]. Rock and Soil Mechanics, 2008, 29(10): 2789-2793. (in Chinese) doi: 10.3969/j.issn.1000-7598.2008.10.037
|
[17] |
HALL E B, GORDON B B. Triaxial testing with large-scale high pressure equipment[J]. Laboratory Shear Testing of Soils, 1963, 361: 315-328.
|
[18] |
WEI H Z, ZHAO T, HE J Q, et al. Evolution of particle breakage for calcareous sands during ring shear tests[J]. International Journal of Geomechanics, 2018, 18(2): 04017153. doi: 10.1061/(ASCE)GM.1943-5622.0001073
|
[19] |
吴琪, 陈国兴, 朱雨萌, 等. 基于等效骨架孔隙比指标的饱和砂类土抗液化强度评价[J]. 岩土工程学报, 2018, 40(10): 1912-1922. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201810024.htm
WU Qi, CHEN Guo-xing, ZHU Yu-meng, et al. Evaluating liquefaction resistance of saturated sandy soils based on equivalent skeleton void ratio[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1912-1922. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201810024.htm
|
[20] |
吴琪, 刘抗, 郭启洲, 等. 基于二元介质模型的砂类土小应变剪切模量评价方法[J]. 岩土力学, 2020, 41(11): 3641-3650. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202011015.htm
WU Qi, LIU Kang, GUO Qi-zhou, et al. A new method for evaluating small-strain shear modulus of sandy soils based on binary medium model[J]. Rock and Soil Mechanics, 2020, 41(11): 3641-3650. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202011015.htm
|
[21] |
胡明鉴, 崔翔, 王新志, 等. 细颗粒对钙质砂渗透性的影响试验研究[J]. 岩土力学, 2019, 40(8): 2925-2930. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201908006.htm
HU Ming-jian, CUI Xiang, WANG Xin-zhi, et al. Experimental study of the effect of fine particles on permeability of the calcareous sand[J]. Rock and Soil Mechanics, 2019, 40(8): 2925-2930. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201908006.htm
|
[22] |
张晨阳, 谌民, 胡明鉴, 等. 细颗粒组分含量对钙质砂抗剪强度的影响[J]. 岩土力学, 2019, 40(增刊1): 195-202. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2019S1029.htm
ZHANG Chen-yang, CHEN Min, HU Ming-jian, et al. Effect of fine particles content on shear strength of calcareous sand[J]. Rock and Soil Mechanics, 2019, 40(S1): 195-202. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2019S1029.htm
|
[23] |
吴琪, 陈国兴, 周正龙, 等. 基于颗粒接触状态理论的粗细粒混合料液化强度试验研究[J]. 岩土工程学报, 2018, 40(3): 475-485. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201803014.htm
WU Qi, CHEN Guo-xing, ZHOU Zheng-long, et al. Experimental investigation on liquefaction resistance of fine-coarse-grained soil mixtures based on theory of intergrain contact state[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 475-485. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201803014.htm
|
[24] |
KARIM M E, ALAM M J. Effect of non-plastic silt content on the liquefaction behavior of sand-silt mixture[J]. Soil Dynamics and Earthquake Engineering, 2014, 65: 142-150. doi: 10.1016/j.soildyn.2014.06.010
|
[25] |
THEVANAYAGAM S, MARTIN G R. Liquefaction in silty soils—screening and remediation issues[J]. Soil Dynamics and Earthquake Engineering, 2002, 22(9/10/11/12): 1035-1042. https://www.sciencedirect.com/science/article/pii/S0267726102001288
|
[26] |
LASHKARI A. Recommendations for extension and re-calibration of an existing sand constitutive model taking into account varying non-plastic fines content[J]. Soil Dynamics and Earthquake Engineering, 2014, 61/62: 212-238. doi: 10.1016/j.soildyn.2014.02.012
|
[27] |
RAHMAN M M, LO S R, GNANENDRAN C T. On equivalent granular void ratio and steady state behaviour of loose sand with fines[J]. Canadian Geotechnical Journal, 2008, 45(10): 1439-1456. doi: 10.1139/T08-064
|
[28] |
THEVANAYAGAM S, SHENTHAN T, MOHAN S, et al. Undrained fragility of clean sands, silty sands, and sandy silts[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(10): 849-859. doi: 10.1061/(ASCE)1090-0241(2002)128:10(849)
|
[29] |
MOHAMMADI A, QADIMI A. A simple critical state approach to predicting the cyclic and monotonic response of sands with different fines contents using the equivalent intergranular void ratio[J]. Acta Geotechnica, 2015, 10(5): 587-606. doi: 10.1007/s11440-014-0318-z
|
[30] |
刘崇权, 汪稔. 钙质砂物理力学性质初探[J]. 岩土力学, 1998, 19(1): 32-37, 44. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX199801005.htm
LIU Chong-quan, WANG Ren. Preliminary research on physical and mechanical properties of calcareous sand[J]. Rock and Soil Mechanics, 1998, 19(1): 32-37, 44. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX199801005.htm
|
[31] |
汪稔, 宋朝景, 赵焕庭, 等. 南沙群岛珊瑚礁工程地质[M]. 北京: 科学出版社, 1997.
WANG Ren, SONG Chao-jin, ZHAO Huan-ting, et al. Engineering Geology of Coral Reefs in Nansha Islands[M]. Beijing: Science Press, 1997. (in Chinese)
|
[32] |
ASTM D4254-14. Standard Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density[S]. Annual Book of ASTM standards, 2006.
|
[33] |
ASTM D4253-16. Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table[S]. Annual Book of ASTM Standards, 2016.
|
[34] |
土工试验方法标准: GB/T 50123—2019[S]. 2019(Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. 2019. (in Chinese)).
|
[35] |
马维嘉, 陈国兴, 吴琪. 复杂加载条件下珊瑚砂抗液化强度试验研究[J]. 岩土力学, 2020, 41(2): 535-542, 551. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202002025.htm
MA Wei-jia, CHEN Guo-xing, WU Qi. Experimental study on liquefaction resistance of coral sand under complex loading conditions[J]. Rock and Soil Mechanics, 2020, 41(2): 535-542, 551. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202002025.htm
|
[36] |
LIU X, LI S, SUN L Q. The study of dynamic properties of carbonate sand through a laboratory database[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(7): 3843-3855. doi: 10.1007/s10064-020-01785-z
|
[37] |
HARDIN B O, DRNEVICH V P. Shear modulus and damping in soils: design equations and curves[J]. Journal of the Soil Mechanics and Foundations Division, 1972, 98(7): 667-692. doi: 10.1061/JSFEAQ.0001760
|
[38] |
IWASAKI T, TATSUOKA F. Effects of grain size and grading on dynamic shear moduli of sands[J]. Soils and Foundations, 1977, 17(3): 19-35. doi: 10.3208/sandf1972.17.3_19
|
[39] |
YANG J, LIU X. Shear wave velocity and stiffness of sand: the role of non-plastic fines[J]. Géotechnique, 2016, 66(6): 500-514. doi: 10.1680/jgeot.15.P.205
|
[40] |
CHIEN L K, OH Y N. Influence of fines content and initial shear stress on dynamic properties of hydraulic reclaimed soil[J]. Canadian Geotechnical Journal, 2002, 39(1): 242-253. doi: 10.1139/t01-082
|
[41] |
GOUDARZY M, RAHMAN M M, KÖNIG D, et al. Influence of non-plastic fines content on maximum shear modulus of granular materials[J]. Soils and Foundations, 2016, 56(6): 973-983. doi: 10.1016/j.sandf.2016.11.003
|
[42] |
WICHTMANN T, NAVARRETE HERNÁNDEZ M A, TRIANTAFYLLIDIS T. On the influence of a non-cohesive fines content on small strain stiffness, modulus degradation and damping of quartz sand[J]. Soil Dynamics and Earthquake Engineering, 2015, 69: 103-114. doi: 10.1016/j.soildyn.2014.10.017
|
[43] |
DARENDELI M B. Development of a New Family of Normalized Modulus Reduction and Material Damping Curves[M]. Austin: The University of Texas at Austin, 2001.
|
[44] |
MARTIN P P, SEED H B. One-dimensional dynamic ground response analyses[J]. Journal of the Geotechnical Engineering Division, 1982, 108(7): 935-952. doi: 10.1061/AJGEB6.0001316
|
[45] |
陈国兴, 刘雪珠, 朱定华, 等. 南京新近沉积土动剪切模量比与阻尼比的试验研究[J]. 岩土工程学报, 2006, 28(8): 1023-1027. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200608017.htm
CHEN Guo-xing, LIU Xue-zhu, ZHU Ding-hua, et al. Experimental studies on dynamic shear modulus ratio and damping ratio of recently deposited soils in Nanjing[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 1023-1027. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200608017.htm
|
[46] |
丁祖德, 黄娟, 袁铁映, 等. 昆明泥炭质土动剪切模量与阻尼比的试验研究[J]. 岩土力学, 2017, 38(12): 3627-3634. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201712031.htm
DING Zu-de, HUANG Juan, YUAN Tie-ying, et al. Experimental study of dynamic shear modulus and damping ratio of peaty soil in Kunming[J]. Rock and Soil Mechanics, 2017, 38(12): 3627-3634. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201712031.htm
|
[47] |
袁晓铭, 孙锐, 孙静, 等. 常规土类动剪切模量比和阻尼比试验研究[J]. 地震工程与工程振动, 2000, 20(4): 133-139. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200004021.htm
YUAN Xiao-ming, SUN Rui, SUN Jing, et al. Laboratory experimental study on dynamic shear modulus ratio and damping ratio of soils[J]. Earthquake Engineering and Engineering Vibration, 2000, 20(4): 133-139. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200004021.htm
|
[48] |
KOKUSHO T. Cyclic triaxial test of dynamic soil properties for wide strain range[J]. Soils and Foundations, 1980, 20(2): 45-60. https://www.jstage.jst.go.jp/article/sandf1972/20/2/20_2_45/_article
|
[49] |
SEED H B, IDRISS I M. Soil Moduli and Damping Factors for Dynamic Analysis[R]. Berkeley: University of California, 1970.
|
[1] | YANG Wen-bao, CHEN Guo-xing, WU Qi, QIN You, ZHAO Kai. Comparative investigation on dynamic shear modulus and damping ratio of marine soils in different seas[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 112-117. DOI: 10.11779/CJGE2020S2020 |
[2] | LI Xiao-mei, WANG Fang, HAN Lin, GUAN Yun-fei, ZHAN Xin-jie. Resonant column tests on maximum shear modulus and damping ratio of coral sand[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 60-64. DOI: 10.11779/CJGE2020S1012 |
[3] | WEN Shao-jie, ZHANG Wu-yu, ZENG Cui-qing. Experimental study on dynamic shear modulus and damping ratio of undisturbed loess in Haidong area[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 137-140. DOI: 10.11779/CJGE2019S2035 |
[4] | CHENG Ke, MIAO Yu. Effects of loess content on dynamic shear modulus and damping ratio of Taiyuan sand[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 69-72. DOI: 10.11779/CJGE2019S2018 |
[5] | LIU Xin, LI Sa, LIU Xiao-long, CHEN Wen-wei. Experimental study on dynamic shear modulus and damping ratio of calcareous sands in the South China Sea[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1773-1780. DOI: 10.11779/CJGE201909024 |
[6] | BI Sheng, CHEN Guo-xing, ZHOU Zheng-long, WU Qi. Experimental study on influences of fines content and consolidation stress on shear modulus and damping ratio of saturated sand[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(s1): 48-52. DOI: 10.11779/CJGE2017S1010 |
[7] | SUN Tian, CHEN Guo-xing, ZHOU En-quan, LI Xiao-jun. Experimental study on dynamic shear modulus ratio and damping ratio of marine soils in Qiongzhou Strait with depth less than 100 m[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 375-382. |
[8] | ZHAN Ji-yan, CHEN Guo-xing, YANG Wei-lin, HU Qing-xing. Experimental study on dynamic shear modulus ratio and damping ratio of Suzhou quaternary sedimentary soil[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(3): 559-566. |
[9] | QI Jianfeng, LUAN Maotian, YANG Qing, MA Tailei, YUAN Ying. Dynamic shear modulus and damping ratio of saturated clay[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(4): 518-523. |
[10] | CHEN Guoxing, LIU Xuezhu, ZHU Dinghua, HU Qingxing. Experimental studies on dynamic shear modulus ratio and damping ratio of recently deposited soils in Nanjing[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 1023-1027. |