• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WU Qi, YANG Zheng-tao, LIU Kang, CHEN Guo-xing. Experimental study on influences of fines content on dynamic deformation characteristics of saturated coral sand[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1386-1396. DOI: 10.11779/CJGE202208003
Citation: WU Qi, YANG Zheng-tao, LIU Kang, CHEN Guo-xing. Experimental study on influences of fines content on dynamic deformation characteristics of saturated coral sand[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1386-1396. DOI: 10.11779/CJGE202208003

Experimental study on influences of fines content on dynamic deformation characteristics of saturated coral sand

More Information
  • Received Date: September 18, 2021
  • Available Online: September 22, 2022
  • In order to meet the urgent need for the cyclic characteristic parameters of coral sand in the proper engineering analysis of both military and civilian function facilities located in Nansha reefs and offshore marine areas, it is an important and emergent scientific task to study the dynamic deformation characteristics of the coral sand of the Nansha Islands in China. A series of resonance column tests are carried out on the saturated coral sand specimens from Nansha Islands. The aim of the tests is to investigate the effects of relative density Dr, initial effective confining pressure σm and fines content FC on the dynamic deformation characteristics of the specimens. The test results show that the stress exponent n, reflecting the rates of Gmax increment due to the enhancement of σm, presents a soil-specific constant. Synthesising the test data here and from three saturated sandy soils in the literatures, it is found that the stress-corrected maximum shear modulus Gmax/(σm/pa)n decreases monotonically with the increase of the equivalent skeleton void ratio e, and a power relationship between Gmax/(σm/pa)n and e*sk is then obtained. At the same strain level, the dynamic shear modulus G of the coral sand decreases with the increase of FC, and increases with the increase of Dr and σm. FC, Dr and σm have few effects on the damping ratio when the shear strain γ < 10-4, but have a significant effect on the damping ratio when γ > 10-4. Dr and σm have no obvious influences on the dynamic shear modulus ratio G/Gmax. When 0% ≤ FC ≤ 30%, the G/Gmax-γ attenuation curve continues to decline with the increase of FC. The recommended values of fitting parametes A and B of the Davidenkov model for the coral sand are given, and it is found that the reference shear strain γ0 decreases linearly with FC.
  • [1]
    刘汉龙, 张宇, 郭伟, 等. 微生物加固钙质砂动孔压模型研究[J]. 岩石力学与工程学报, 2021, 40(4): 790-801. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202104012.htm

    LIU Han-long, ZHANG Yu, GUO Wei, et al. A prediction model of dynamic pore water pressure for MICP-treated calcareous sand[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(4): 790-801. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202104012.htm
    [2]
    袁晓铭, 张文彬, 段志刚, 等. 珊瑚土工程场地地震液化特征解析[J]. 岩石力学与工程学报, 2019, 38(增刊2): 3799-3811. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S2056.htm

    YUAN Xiao-ming, ZHANG Wen-bin, DUAN Zhi-gang, et al. Analysis for characteristics of seismic liquefaction in engineering sites of coralline soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S2): 3799-3811. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S2056.htm
    [3]
    刘鑫, 李飒, 刘小龙, 等. 南海钙质砂的动剪切模量与阻尼比试验研究[J]. 岩土工程学报, 2019, 41(9): 1773-1780. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201909027.htm

    LIU Xin, LI Sa, LIU Xiao-long, et al. Experimental study on dynamic shear modulus and damping ratio of calcareous sands in the South China Sea[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1773-1780. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201909027.htm
    [4]
    PANDO M A, SANDOVAL E A, CATANO J. Liquefaction susceptibility and dynamic properties of calcareous sands from Cabo Rojo, Puerto Rico[C]// Proceedings of the 15th World Conference on Earthquake Engineering. Lisbon, 2012.
    [5]
    CARRARO J, BORTOLOTTO M. Stiffness degradation and damping of carbonate and silica sands[M]//Frontiers in Offshore Geotechnics III. Boca Raton: CRC Press, 2015: 1179-1183.
    [6]
    CATANO J, PANDO M A. Static and dynamic properties of a calcareous sand from southwest Puerto Rico[C]// GeoFlorida 2010. Orlando, 2010.
    [7]
    JAFARIAN Y, JAVDANIAN H. Dynamic properties of calcareous sand from the Persian Gulf in comparison with siliceous sands database[J]. International Journal of Civil Engineering, 2020, 18(2): 245-249. doi: 10.1007/s40999-019-00402-9
    [8]
    PHAM H H G, VANI P O V, IMPE W V, et al. Effects of grain size distribution on the initial strain shear modulus of calcareous sand[C]// 16th Geotechnical Engineering for Infrastructure and Development. ICE Publishing, 2015: 3177-3182.
    [9]
    梁珂, 陈国兴, 杭天柱, 等. 砂类土最大动剪切模量的新预测模型[J]. 岩土力学, 2020, 41(6): 1963-1970, 1982. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202006020.htm

    LIANG Ke, CHEN Guo-xing, HANG Tian-zhu, et al. A new prediction model of small-strain shear modulus of sandy soils[J]. Rock and Soil Mechanics, 2020, 41(6): 1963-1970, 1982. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202006020.htm
    [10]
    MORSY A M, SALEM M A, ELMAMLOUK H H. Evaluation of dynamic properties of calcareous sands in Egypt at small and medium shear strain ranges[J]. Soil Dynamics and Earthquake Engineering, 2019, 116: 692-708. doi: 10.1016/j.soildyn.2018.09.030
    [11]
    高冉, 叶剑红. 中国南海吹填岛礁钙质砂动力特性试验研究[J]. 岩土力学, 2019, 40(10): 3897-3908, 3919. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201910024.htm

    GAO Ran, YE Jian-hong. Experimental investigation on the dynamic characteristics of calcareous sand from the reclaimed coral reef Islands in the South China Sea[J]. Rock and Soil Mechanics, 2019, 40(10): 3897-3908, 3919. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201910024.htm
    [12]
    梁珂, 何杨, 陈国兴. 南沙珊瑚砂的动剪切模量和阻尼比特性试验研究[J]. 岩土力学, 2020, 41(1): 23-31, 38. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202001004.htm

    LIANG Ke, HE Yang, CHEN Guo-xing. Experimental study of dynamic shear modulus and damping ratio characteristics of coral sand from Nansha Islands[J]. Rock and Soil Mechanics, 2020, 41(1): 23-31, 38. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202001004.htm
    [13]
    梁珂, 陈国兴, 何杨, 等. 基于相关函数理论的动模量和阻尼比计算新方法[J]. 岩土力学, 2019, 40(4): 1368-1376, 1386. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201904016.htm

    LIANG Ke, CHEN Guo-xing, HE Yang, et al. A new method for calculation of dynamic modulus and damping ratio based on theory of correlation function[J]. Rock and Soil Mechanics, 2019, 40(4): 1368-1376, 1386. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201904016.htm
    [14]
    史金权, 肖杨, 刘汉龙, 等. 钙质砂小应变初始剪切模量试验研究[J]. 岩土工程学报, 2022, 44(2): 324-333. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202202014.htm

    SHI Jin-quan, XIAO Yang, LIU Han-long, et al. Experimental study on small-strain shear modulus of calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 324-333. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202202014.htm
    [15]
    王刚, 查京京, 魏星. 循环三轴应力路径下钙质砂颗粒破碎演化规律[J]. 岩土工程学报, 2019, 41(4): 755-760. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904025.htm

    WANG Gang, ZHA Jing-jing, WEI Xing. Evolution of particle crushing of carbonate sands under cyclic triaxial stress path[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 755-760. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904025.htm
    [16]
    张家铭, 张凌, 蒋国盛, 等. 剪切作用下钙质砂颗粒破碎试验研究[J]. 岩土力学, 2008, 29(10): 2789-2793. doi: 10.3969/j.issn.1000-7598.2008.10.037

    ZHANG Jia-ming, ZHANG Ling, JIANG Guo-sheng, et al. Research on particle crushing of calcareous sands under triaxial shear[J]. Rock and Soil Mechanics, 2008, 29(10): 2789-2793. (in Chinese) doi: 10.3969/j.issn.1000-7598.2008.10.037
    [17]
    HALL E B, GORDON B B. Triaxial testing with large-scale high pressure equipment[J]. Laboratory Shear Testing of Soils, 1963, 361: 315-328.
    [18]
    WEI H Z, ZHAO T, HE J Q, et al. Evolution of particle breakage for calcareous sands during ring shear tests[J]. International Journal of Geomechanics, 2018, 18(2): 04017153. doi: 10.1061/(ASCE)GM.1943-5622.0001073
    [19]
    吴琪, 陈国兴, 朱雨萌, 等. 基于等效骨架孔隙比指标的饱和砂类土抗液化强度评价[J]. 岩土工程学报, 2018, 40(10): 1912-1922. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201810024.htm

    WU Qi, CHEN Guo-xing, ZHU Yu-meng, et al. Evaluating liquefaction resistance of saturated sandy soils based on equivalent skeleton void ratio[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1912-1922. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201810024.htm
    [20]
    吴琪, 刘抗, 郭启洲, 等. 基于二元介质模型的砂类土小应变剪切模量评价方法[J]. 岩土力学, 2020, 41(11): 3641-3650. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202011015.htm

    WU Qi, LIU Kang, GUO Qi-zhou, et al. A new method for evaluating small-strain shear modulus of sandy soils based on binary medium model[J]. Rock and Soil Mechanics, 2020, 41(11): 3641-3650. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202011015.htm
    [21]
    胡明鉴, 崔翔, 王新志, 等. 细颗粒对钙质砂渗透性的影响试验研究[J]. 岩土力学, 2019, 40(8): 2925-2930. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201908006.htm

    HU Ming-jian, CUI Xiang, WANG Xin-zhi, et al. Experimental study of the effect of fine particles on permeability of the calcareous sand[J]. Rock and Soil Mechanics, 2019, 40(8): 2925-2930. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201908006.htm
    [22]
    张晨阳, 谌民, 胡明鉴, 等. 细颗粒组分含量对钙质砂抗剪强度的影响[J]. 岩土力学, 2019, 40(增刊1): 195-202. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2019S1029.htm

    ZHANG Chen-yang, CHEN Min, HU Ming-jian, et al. Effect of fine particles content on shear strength of calcareous sand[J]. Rock and Soil Mechanics, 2019, 40(S1): 195-202. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2019S1029.htm
    [23]
    吴琪, 陈国兴, 周正龙, 等. 基于颗粒接触状态理论的粗细粒混合料液化强度试验研究[J]. 岩土工程学报, 2018, 40(3): 475-485. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201803014.htm

    WU Qi, CHEN Guo-xing, ZHOU Zheng-long, et al. Experimental investigation on liquefaction resistance of fine-coarse-grained soil mixtures based on theory of intergrain contact state[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 475-485. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201803014.htm
    [24]
    KARIM M E, ALAM M J. Effect of non-plastic silt content on the liquefaction behavior of sand-silt mixture[J]. Soil Dynamics and Earthquake Engineering, 2014, 65: 142-150. doi: 10.1016/j.soildyn.2014.06.010
    [25]
    THEVANAYAGAM S, MARTIN G R. Liquefaction in silty soils—screening and remediation issues[J]. Soil Dynamics and Earthquake Engineering, 2002, 22(9/10/11/12): 1035-1042. https://www.sciencedirect.com/science/article/pii/S0267726102001288
    [26]
    LASHKARI A. Recommendations for extension and re-calibration of an existing sand constitutive model taking into account varying non-plastic fines content[J]. Soil Dynamics and Earthquake Engineering, 2014, 61/62: 212-238. doi: 10.1016/j.soildyn.2014.02.012
    [27]
    RAHMAN M M, LO S R, GNANENDRAN C T. On equivalent granular void ratio and steady state behaviour of loose sand with fines[J]. Canadian Geotechnical Journal, 2008, 45(10): 1439-1456. doi: 10.1139/T08-064
    [28]
    THEVANAYAGAM S, SHENTHAN T, MOHAN S, et al. Undrained fragility of clean sands, silty sands, and sandy silts[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(10): 849-859. doi: 10.1061/(ASCE)1090-0241(2002)128:10(849)
    [29]
    MOHAMMADI A, QADIMI A. A simple critical state approach to predicting the cyclic and monotonic response of sands with different fines contents using the equivalent intergranular void ratio[J]. Acta Geotechnica, 2015, 10(5): 587-606. doi: 10.1007/s11440-014-0318-z
    [30]
    刘崇权, 汪稔. 钙质砂物理力学性质初探[J]. 岩土力学, 1998, 19(1): 32-37, 44. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX199801005.htm

    LIU Chong-quan, WANG Ren. Preliminary research on physical and mechanical properties of calcareous sand[J]. Rock and Soil Mechanics, 1998, 19(1): 32-37, 44. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX199801005.htm
    [31]
    汪稔, 宋朝景, 赵焕庭, 等. 南沙群岛珊瑚礁工程地质[M]. 北京: 科学出版社, 1997.

    WANG Ren, SONG Chao-jin, ZHAO Huan-ting, et al. Engineering Geology of Coral Reefs in Nansha Islands[M]. Beijing: Science Press, 1997. (in Chinese)
    [32]
    ASTM D4254-14. Standard Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density[S]. Annual Book of ASTM standards, 2006.
    [33]
    ASTM D4253-16. Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table[S]. Annual Book of ASTM Standards, 2016.
    [34]
    土工试验方法标准: GB/T 50123—2019[S]. 2019(Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. 2019. (in Chinese)).
    [35]
    马维嘉, 陈国兴, 吴琪. 复杂加载条件下珊瑚砂抗液化强度试验研究[J]. 岩土力学, 2020, 41(2): 535-542, 551. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202002025.htm

    MA Wei-jia, CHEN Guo-xing, WU Qi. Experimental study on liquefaction resistance of coral sand under complex loading conditions[J]. Rock and Soil Mechanics, 2020, 41(2): 535-542, 551. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202002025.htm
    [36]
    LIU X, LI S, SUN L Q. The study of dynamic properties of carbonate sand through a laboratory database[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(7): 3843-3855. doi: 10.1007/s10064-020-01785-z
    [37]
    HARDIN B O, DRNEVICH V P. Shear modulus and damping in soils: design equations and curves[J]. Journal of the Soil Mechanics and Foundations Division, 1972, 98(7): 667-692. doi: 10.1061/JSFEAQ.0001760
    [38]
    IWASAKI T, TATSUOKA F. Effects of grain size and grading on dynamic shear moduli of sands[J]. Soils and Foundations, 1977, 17(3): 19-35. doi: 10.3208/sandf1972.17.3_19
    [39]
    YANG J, LIU X. Shear wave velocity and stiffness of sand: the role of non-plastic fines[J]. Géotechnique, 2016, 66(6): 500-514. doi: 10.1680/jgeot.15.P.205
    [40]
    CHIEN L K, OH Y N. Influence of fines content and initial shear stress on dynamic properties of hydraulic reclaimed soil[J]. Canadian Geotechnical Journal, 2002, 39(1): 242-253. doi: 10.1139/t01-082
    [41]
    GOUDARZY M, RAHMAN M M, KÖNIG D, et al. Influence of non-plastic fines content on maximum shear modulus of granular materials[J]. Soils and Foundations, 2016, 56(6): 973-983. doi: 10.1016/j.sandf.2016.11.003
    [42]
    WICHTMANN T, NAVARRETE HERNÁNDEZ M A, TRIANTAFYLLIDIS T. On the influence of a non-cohesive fines content on small strain stiffness, modulus degradation and damping of quartz sand[J]. Soil Dynamics and Earthquake Engineering, 2015, 69: 103-114. doi: 10.1016/j.soildyn.2014.10.017
    [43]
    DARENDELI M B. Development of a New Family of Normalized Modulus Reduction and Material Damping Curves[M]. Austin: The University of Texas at Austin, 2001.
    [44]
    MARTIN P P, SEED H B. One-dimensional dynamic ground response analyses[J]. Journal of the Geotechnical Engineering Division, 1982, 108(7): 935-952. doi: 10.1061/AJGEB6.0001316
    [45]
    陈国兴, 刘雪珠, 朱定华, 等. 南京新近沉积土动剪切模量比与阻尼比的试验研究[J]. 岩土工程学报, 2006, 28(8): 1023-1027. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200608017.htm

    CHEN Guo-xing, LIU Xue-zhu, ZHU Ding-hua, et al. Experimental studies on dynamic shear modulus ratio and damping ratio of recently deposited soils in Nanjing[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 1023-1027. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200608017.htm
    [46]
    丁祖德, 黄娟, 袁铁映, 等. 昆明泥炭质土动剪切模量与阻尼比的试验研究[J]. 岩土力学, 2017, 38(12): 3627-3634. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201712031.htm

    DING Zu-de, HUANG Juan, YUAN Tie-ying, et al. Experimental study of dynamic shear modulus and damping ratio of peaty soil in Kunming[J]. Rock and Soil Mechanics, 2017, 38(12): 3627-3634. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201712031.htm
    [47]
    袁晓铭, 孙锐, 孙静, 等. 常规土类动剪切模量比和阻尼比试验研究[J]. 地震工程与工程振动, 2000, 20(4): 133-139. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200004021.htm

    YUAN Xiao-ming, SUN Rui, SUN Jing, et al. Laboratory experimental study on dynamic shear modulus ratio and damping ratio of soils[J]. Earthquake Engineering and Engineering Vibration, 2000, 20(4): 133-139. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200004021.htm
    [48]
    KOKUSHO T. Cyclic triaxial test of dynamic soil properties for wide strain range[J]. Soils and Foundations, 1980, 20(2): 45-60. https://www.jstage.jst.go.jp/article/sandf1972/20/2/20_2_45/_article
    [49]
    SEED H B, IDRISS I M. Soil Moduli and Damping Factors for Dynamic Analysis[R]. Berkeley: University of California, 1970.
  • Related Articles

    [1]YANG Wen-bao, CHEN Guo-xing, WU Qi, QIN You, ZHAO Kai. Comparative investigation on dynamic shear modulus and damping ratio of marine soils in different seas[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 112-117. DOI: 10.11779/CJGE2020S2020
    [2]LI Xiao-mei, WANG Fang, HAN Lin, GUAN Yun-fei, ZHAN Xin-jie. Resonant column tests on maximum shear modulus and damping ratio of coral sand[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 60-64. DOI: 10.11779/CJGE2020S1012
    [3]WEN Shao-jie, ZHANG Wu-yu, ZENG Cui-qing. Experimental study on dynamic shear modulus and damping ratio of undisturbed loess in Haidong area[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 137-140. DOI: 10.11779/CJGE2019S2035
    [4]CHENG Ke, MIAO Yu. Effects of loess content on dynamic shear modulus and damping ratio of Taiyuan sand[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 69-72. DOI: 10.11779/CJGE2019S2018
    [5]LIU Xin, LI Sa, LIU Xiao-long, CHEN Wen-wei. Experimental study on dynamic shear modulus and damping ratio of calcareous sands in the South China Sea[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1773-1780. DOI: 10.11779/CJGE201909024
    [6]BI Sheng, CHEN Guo-xing, ZHOU Zheng-long, WU Qi. Experimental study on influences of fines content and consolidation stress on shear modulus and damping ratio of saturated sand[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(s1): 48-52. DOI: 10.11779/CJGE2017S1010
    [7]SUN Tian, CHEN Guo-xing, ZHOU En-quan, LI Xiao-jun. Experimental study on dynamic shear modulus ratio and damping ratio of marine soils in Qiongzhou Strait with depth less than 100 m[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 375-382.
    [8]ZHAN Ji-yan, CHEN Guo-xing, YANG Wei-lin, HU Qing-xing. Experimental study on dynamic shear modulus ratio and damping ratio of Suzhou quaternary sedimentary soil[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(3): 559-566.
    [9]QI Jianfeng, LUAN Maotian, YANG Qing, MA Tailei, YUAN Ying. Dynamic shear modulus and damping ratio of saturated clay[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(4): 518-523.
    [10]CHEN Guoxing, LIU Xuezhu, ZHU Dinghua, HU Qingxing. Experimental studies on dynamic shear modulus ratio and damping ratio of recently deposited soils in Nanjing[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 1023-1027.

Catalog

    Article views (234) PDF downloads (105) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return