• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Xin, LI Sa, LIU Xiao-long, CHEN Wen-wei. Experimental study on dynamic shear modulus and damping ratio of calcareous sands in the South China Sea[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1773-1780. DOI: 10.11779/CJGE201909024
Citation: LIU Xin, LI Sa, LIU Xiao-long, CHEN Wen-wei. Experimental study on dynamic shear modulus and damping ratio of calcareous sands in the South China Sea[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1773-1780. DOI: 10.11779/CJGE201909024

Experimental study on dynamic shear modulus and damping ratio of calcareous sands in the South China Sea

More Information
  • Received Date: September 09, 2018
  • Published Date: September 24, 2019
  • The dynamic shear modulus and damping ratio are two important parameters for the dynamic stability analysis of geotechnical structures and offshore sites. In order to evaluate the dynamic characteristics of calcareous sand in the offshore sites, the resonant column tests are performed on the calcareous sand by GCTS resonant column apparatus. Meanwhile, the effects of effective confining pressure and relative density on the dynamic shear modulus and damping ratio are investigated and compared with those of the quartz sand. It is found that the calcareous sand shows higher maximum dynamic shear modulus, higher damping ratio, and faster stiffness degradation than the quartz sand under similar states of effective confining pressure and relative density. Generally speaking, the calcareous sand shows higher Gmax than the quartz sand when the shear strain is less than 0.1%. Finally, a mathematical model for the normalized dynamic shear modulus and damping ratio of the calcareous sand is established according to the test results in this study. Based on the existing researches on the calcareous sand, the variation ranges of the normalized dynamic shear modulus and damping ratio of the calcareous sand are given, and they may provide the basis for the dynamic stability analysis of buildings in the construction of calcareous sand sites.
  • [1]
    沈建华, 汪稔. 钙质砂的工程性质研究进展与展望[J]. 工程地质学报, 2010, 18(增刊1): 26-32.
    (SHEN Jian-hua, WANG Ren.Study on engineering properties of calcareous sand[J]. Journal of Engineering Geology, 2010, 18(S1): 26-32. (in Chinese))
    [2]
    金宗川, 陈伟俊, 王新志, 等. 南海钙质砂的休止角与工程应用[J]. 岩土力学, 2018, 39(7): 1-9.
    (JIN Zong-chuan, CHEN Wei-jun, WANG Xin-zhi, et al.Study on engineering application of natural repose angle of calcareous sand[J]. Rock and Soil Mechanics, 2018, 39(7): 1-9. (in Chinese))
    [3]
    张炜, 李亚, 周松望, 等. 南海北部区域黏土循环动力特性试验研究[J]. 岩土力学, 2018, 39(7): 1-11.
    (ZHANG Wei, LI Ya, ZHOU Song-wang, et al.Experimental research on cyclic behaviors of clay in the northern region of South China Sea[J]. Rock and Soil Mechanics, 2018, 39(7): 1-11. (in Chinese))
    [4]
    虞海珍, 汪稔. 钙质砂动强度试验研究[J]. 岩土力学, 1999, 20(4): 6-11.
    (YU Hai-zhen, WANG Ren.The cyclic strength test research on calcareous sand[J]. Rock and Soil Mechanics, 1999, 20(4): 6-11. (in Chinese))
    [5]
    李建国. 波浪荷载下饱和钙质砂动力特性的试验研究[D]. 武汉: 中国科学院武汉岩土力学研究所, 2005.
    (LI Jian-guo.Experimental research on dynamic behavior of saturated calcareous sand under wave loading[D]. Wuhan: Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, 2005. (in Chinese))
    [6]
    刘汉龙, 胡鼎, 肖杨, 等. 钙质砂动力液化特性的试验研究[J]. 防灾减灾工程学报, 2015, 35(6): 707-711.
    (LIU Han-long, HU Ding, XIAO Yang, et al.Test study on dynamic liquefaction characteristics of calcareous sand[J]. Journal of Disaster Prevention and Mitigation Engineering, 2015, 35(6): 707-711. (in Chinese))
    [7]
    HYODO M, ARAMAKI N, ITOH M, et al.Cyclic strength and deformation of crushable carbonate sand[J]. Soil Dynamics and Earthquake Engineering, 1996, 15(5): 331-336.
    [8]
    MAO X, FAHEY M.Behaviour of calcareous soils in undrained cyclic simple shear[J]. Géotechnique, 2003, 53(8): 715-727.
    [9]
    SANDOVAL E A, PANDO M A, OLGUN C G.Liquefaction susceptibility of a calcareous sand from southwest Puerto Rico[C]// Proceedings of the 5th International Conference on Earthquake Geotechnical Engineering. Santiago, 2011.
    [10]
    SANDOVAL E A, PANDO M A.Experimental assessment of the liquefaction resistance of calcareous biogenous sands[J]. Earth Sciences Research Journal, 2012, 16(1): 55-63.
    [11]
    PORCINO D, CARIDI G, GHIONNA V N.Undrained monotonic and cyclic simple shear behavior of carbonate sand[J]. Géotechnique, 2008, 58(8): 635-644.
    [12]
    PORCINO D, MARCIANO V.Evaluating liquefaction resistance of a calcareous sand using the cone penetration test[C]// Proceedings of the 5th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. San Diego, California, 2010: 1-9.
    [13]
    CARRARO J A H, BORTOLOTTO M S. Stiffness degradation and damping of carbonate and silica sands[C]// Frontiers in Offshore Geotechnics Ⅲ-Meyer, Taylor & Francis Group. London, 2015: 1179-1183.
    [14]
    WANG Yan-ning.Dynamic properties of fine liquefiable sand and calcareous sand from resonant column testing[D]. Austin: The University of Texas at Austin, 2015.
    [15]
    GIANG P H H, PETER O V I, WILLIAM F V I, et al. Small-strain shear modulus of calcareous sand and its dependence on particle characteristics and gradation[J]. Soil Dynamics and Earthquake Engineering, 2017, 100: 371-379.
    [16]
    ISHIHARA K.Soil behaviour in earthquake geotechnics[M]. New York: Oxford University Press, 1996.
    [17]
    SL 237—1999土工试验规程[S]. 1999. (SL 237—1999 Specification of soil test[S]. 1999. (in Chinese))
    [18]
    贺为民, 李德庆, 杨杰, 等. 土的动剪切模量、阻尼比和泊松比研究进展[J]. 地震工程学报, 2016, 38(2): 309-317.
    (HE Wei-min, LI De-qing, YANG Jie, et al.Recent progress in research on dynamic shear modulus, damping ratio, and poisson ration of soils[J]. China Earthquake Engineering Journal, 2016, 38(2): 309-317. (in Chinese))
    [19]
    SEED H B, IDRISS I M.Soil moduli and damping factors for dynamic analysis [R]. Berkeley: University of California, 1970.
    [20]
    SEED H B, WONG R T, IDRISS I M, et al.Moduli and damping factors for dynamic analyses of cohesionless soils[J]. Journal of Geotechnical Engineering, 1986, 112(11): 1016-1032.
    [21]
    ROLLINS K M, EVANS M D, DIEHL N B, et al.Shear modulus and damping relationships for gravels[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(5): 398-405.
    [22]
    IWASAKI T, TATSUOKA F, TAKAGI Y.Shear moduli of sands under cyclic torsional shear loading[J]. Soils and Foundations, 1978, 18(1): 39-56.
    [23]
    KOKUSHO T.Cyclic triaxial test of dynamic soil properties for wide strain range[J]. Soils and Foundations, 1980, 20(2): 45-60.
    [24]
    NI S H. Dynamic properties of sand under true triaxial stress states from resonant column/torsional shear tests[D].4 ]NI S H. Dynamic properties of sand under true triaxial stress states from resonant column/torsional shear tests[D]. Austin: The University of Texas at Austin, 1987.
    [25]
    ISHIBASHI I, ZHANG X.Unified dynamic shear moduli and damping ratios of sand and clay[J]. Soils and Foundations, 1993, 33(1): 182-191.
    [26]
    EPRI. Guidelines for determining design basis ground motions-volume 2: appendices for ground motion estimation[R]. Palo Alto: Electric Power Research Institute, 1993.
    [27]
    DARENDELI M B, STOKOE K H, RATHJE E M, et al.Importance of confining pressure on nonlinear soil behavior and its impact on earthquake response predictions of deep sites[C]// Proceedings of the XVth International Conference on Soil Mechanics and Geotechnical Engineering. Istanbul, 2001: 2811-2814.
    [28]
    祝龙根, 徐存森. 共振柱仪及其在工程中的应用[J]. 大坝观测与土工测试, 1993, 17(2): 32-37.
    (ZHU Long-gen, XU Cun-sen.The resonant column device and its application in engineering[J]. Dam Observation and Geotechnical Tests, 1993, 17(2): 32-37. (in Chinese))
    [29]
    袁晓铭, 孙锐, 孙静, 等. 常规土类动剪切模量比和阻尼比试验研究[J]. 地震工程与工程振动, 2000, 20(4): 133-139.
    (YUAN Xiao-ming, SUN Rui, SUN Jing, et al.Laboratory experimental study on dynamic shear modulus ratio and damping ration of soils[J]. Earthquake Engineering and Engineering Vibration, 2000, 20(4): 133-139. (in Chinese))
    [30]
    DARENDELI B M.Development of a new family of normalized modulus reduction and material damping curves[D]. Austin: The University of Texas at Austin, 2001.
    [31]
    JAFARIAN Y, JAVDANIAN H, HADDAD A.Dynamic properties of calcareous and siliceous sands under isotropic and anisotropic stress conditions[J]. Soils and Foundations, 2018, 58(1): 172-184.
  • Related Articles

    [1]ZHOU Jie, ZHU Kefan, LIU Chengjun, SHEN Panpan. Shear characteristics of steel pile-soft clay interface under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 49-53. DOI: 10.11779/CJGE2024S20038
    [2]YAN Junbiao, KONG Lingwei, LI Tianguo, ZHOU Zhenhua. Effects of variable shear rate on residual strength of expansive soils and its engineering enlightenment[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1445-1452. DOI: 10.11779/CJGE20230350
    [3]ZHOU Baochun, WANG Jiangwei, SHAN Lixia, LI Ying, LANG Mengting, KONG Lingwei. Torsional ring shear tests on residual strength of expansive soils with different swelling potentials[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(6): 1325-1331. DOI: 10.11779/CJGE20230225
    [4]MIAO Fasheng, ZHAO Fancheng, WU Yiping, MENG Jiajia. Strength characteristics of slip zone soils of Tongjiaping landslide in Three Gorges Reservoir area based on seepage-ring shear tests[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1480-1489. DOI: 10.11779/CJGE20220456
    [5]LIN Peiyuan, GUO Panfeng, GUO Chengchao, CHEN Lichao, WANG Fuming. Experimental study on interfacial shear properties of steel plate, polymer and soil[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 85-93. DOI: 10.11779/CJGE20210845
    [6]WANG Jun, ZHU Chen, LIU Fei-yu, KONG Jian-jie, YAO Jia-min. Shear strength of reinforced soil interface under normal cyclic loading and its prediction[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(5): 954-960. DOI: 10.11779/CJGE202205019
    [7]FAN Zhi-qiang, TANG Hui-ming, TAN Qin-wen, YANG Ying-ming, WEN Tao. Ring shear tests on slip soils and their enlightenment to critical strength of reservoir landslides[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1698-1706. DOI: 10.11779/CJGE201909014
    [8]YAN Shu-wang, LIN Shu, JIA Zhao-lin, LANG Rui-qing. Large-scale direct shear tests on shear strength of interface between marine soil and steel piles[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 495-501. DOI: 10.11779/CJGE201803013
    [9]XU Xiao-feng, WEI Hou-zhen, MENG Qing-shan, WEI Chang-fu, AI Dong-hai. Effects of shear rate on shear strength and deformation characteristics of coarse-grained soils in large-scale direct shear tests[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 728-733.
    [10]YE Weimin, CHEN Bao, BIAN Zuoxiu, ZHU Hehua, BAI Yun. Tri-axial shear strength of Shanghai unsaturated soft clay[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 317-321.
  • Cited by

    Periodical cited type(26)

    1. 陈存强,汪义龙,周延明,顾雷雨,曹睿,冯来宏,高利晶,杨康. 灵东煤矿上分层综放开采型煤相似材料模拟试验研究. 煤炭技术. 2024(01): 51-55 .
    2. 郑纪峰,李啸天. 厚硬顶板隅角悬顶分段多次水力压裂技术研究. 煤炭技术. 2024(03): 21-25 .
    3. 刘洪涛,罗紫龙,韩子俊,韩洲,陈小港,彭佳琛. 厚煤层大采高综放工作面覆岩断裂演化规律研究. 煤炭科学技术. 2024(03): 1-12 .
    4. 秦志宏,赵光明,孟祥瑞,程详,顾清恒,朱世奎. 基于分布式光纤技术的深井工作面覆岩采动裂隙演化规律研究. 采矿与安全工程学报. 2024(05): 889-898 .
    5. 彭宝山,王永乐,杨学孟. 特厚弱胶结顶板煤层综放开采覆岩破坏特征与强矿压机理. 煤炭技术. 2024(10): 75-80 .
    6. 孙斌杨,袁亮,张平松,吴荣新. 巨厚砾岩下采场覆岩运移与离层演化的光-电感知试验研究. 中国矿业大学学报. 2024(05): 977-992 .
    7. 于美鲁,王中文,刘瑜,李春元,李政岱,王鲁瑀. 不同松散层第四含水层水压条件下关键层破断力学机理研究. 采矿与岩层控制工程学报. 2024(05): 132-147 .
    8. 陈璐,余茜,罗容,周子龙,曾铃,郭一鹏. 柱式采空区矿柱失稳诱导边坡滑塌机制研究. 采矿与岩层控制工程学报. 2024(05): 148-163 .
    9. 杨华富,沈建廷. 基于数值模拟的厚煤层回采期间覆岩采动应力及能量变化研究. 陕西煤炭. 2024(12): 21-25 .
    10. 薛梦. 基于断裂带基岩地下3层车站施工技术研究. 建筑机械. 2024(12): 191-195 .
    11. 任连伟,李梁,王自强,邹友峰,顿志林,王树仁. 采空区场地高速铁路路基动力加载系统研发与模型试验. 煤炭学报. 2024(12): 4752-4767 .
    12. 肖江,张成,孙亚超. 大巷煤柱回收工作面覆岩破坏及应力演化规律研究. 煤炭技术. 2023(04): 10-14 .
    13. 徐刚,张春会,张震,刘晓刚,冯彦军,蔺星宇,马镕山,刘前进,李正杰. 综放工作面顶板灾害类型和发生机制及防治技术. 煤炭科学技术. 2023(02): 44-57 .
    14. 刘海洋,孟凡林,赵刚. 榆树泉煤矿厚硬顶板无煤柱自成巷卸压方案设计研究. 能源与环保. 2023(03): 286-292 .
    15. 张村,任赵鹏,兰世勇,方尚鑫,芦佳乐,乔元栋. 煤矿开采损伤数值模拟量化表征与应用. 矿业科学学报. 2023(03): 398-408 .
    16. 金宁平,付宝杰. 厚煤层分层采动直覆砂岩运移规律研究. 矿业研究与开发. 2023(05): 43-49 .
    17. 左建平,于美鲁,孙运江,吴根水. 不同厚度岩层破断模式转变机理及力学模型分析. 煤炭学报. 2023(04): 1449-1463 .
    18. 陆占金. 薄基岩厚松散层煤层覆岩导水断裂带发育高度研究. 矿业安全与环保. 2023(03): 105-110 .
    19. 刘元嘉. 综放工作面过集中煤柱矿压显现规律及控制技术. 能源与节能. 2023(11): 131-133 .
    20. 陈嘉,赵忠明,吴建帮. 采动覆岩“三带”移动变形及裂隙几何分形规律研究. 能源与环保. 2023(11): 36-43 .
    21. 李树刚,刘李东,赵鹏翔,林海飞,徐培耘,卓日升. 综采工作面覆岩压实区裂隙动态演化规律影响因素分析. 煤炭科学技术. 2022(01): 95-104 .
    22. 索永录,白愿. 多年冻土层下煤层开采覆岩破断规律研究. 煤炭技术. 2022(03): 5-9 .
    23. 郭瑞,张勇,陈庆港. 动静载荷下深部开挖巷道围岩变形破坏特征及支护优化. 煤炭技术. 2022(12): 81-85 .
    24. 任建慧. 综放工作面过上覆集中煤柱矿压显现规律及控制技术研究. 中国煤炭. 2022(S1): 248-257 .
    25. 贾林刚. 软岩近距离煤层采动覆岩破坏特征模拟研究. 矿山测量. 2021(03): 1-6 .
    26. 王桂利,孙文杰,赵猛,马志峰,巩思园. 深部临空巨厚坚硬顶板断裂矿震规律及成因研究. 能源与环保. 2021(10): 300-305 .

    Other cited types(35)

Catalog

    Article views (390) PDF downloads (243) Cited by(61)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return