• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
FAN Zhi-qiang, TANG Hui-ming, TAN Qin-wen, YANG Ying-ming, WEN Tao. Ring shear tests on slip soils and their enlightenment to critical strength of reservoir landslides[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1698-1706. DOI: 10.11779/CJGE201909014
Citation: FAN Zhi-qiang, TANG Hui-ming, TAN Qin-wen, YANG Ying-ming, WEN Tao. Ring shear tests on slip soils and their enlightenment to critical strength of reservoir landslides[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1698-1706. DOI: 10.11779/CJGE201909014

Ring shear tests on slip soils and their enlightenment to critical strength of reservoir landslides

More Information
  • Received Date: June 04, 2018
  • Published Date: September 24, 2019
  • The critical strength of landslides is important for their researches, and how to evaluate it accurately has been the focus and nodus. Conducting ring shear tests on slip soils can obtain the peak and residual strength parameters, and it is helpful to reveal the shearing properties of the soils. Thus, the ring shear tests on the slip soils sampled from Huangtupo landslide are carried out, and two normal stress partitions (namely high- and low-stress subareas) are determined with the boundary stress value of 180 kPa. Then, the soil strengths in this two stress partitions are studied. As a result, the post-peak strength-softening mechanism dominated by the decrease of cohesion (decreased by 44.8% in the high-stress subarea, and 93.8% in the low-stress subarea) and the constant of frictional angle (the difference between peak and residual frictional angles in the high-stress subarea is 0.136°, but 0.468° in the low-stress subarea) is illuminated for the slip soils. By employing a weakening coefficient of cohesion, the back analysis method is adopted to study the critical strength of the reservoir landslide under different working conditions. Eventually, by considering the variation of slope stress and the softening-properties of the soils, the reasons why the critical strength is related with the working conditions are discussed, and their enlightening significance and engineering significance are also expounded.
  • [1]
    倪卫达, 唐辉明, 胡新丽, 等. 黄土坡临江I号崩滑体变形及稳定性演化规律研究[J]. 岩土力学, 2013, 34(10): 2961-2970.
    (NI Wei-da, TANG Hui-ming, HU Xin-li, et al.Research on deformation and stability evolution law of Huangtupo riverside slump-mass No.I[J]. Rock and Soil Mechanics, 2013, 34(10): 2961-2970. (in Chinese))
    [2]
    TANG H M, LI C D, HU X L, et al.Evolution characteristics of the Huangtupo landslide based on in situ tunneling and monitoring[J]. Landslides, 2015, 12: 511-521.
    [3]
    SKEMPTON A W.First-time slides in over-consolidated clays[J]. Géotechnique, 1970, 20(3): 320-324.
    [4]
    STARK TD, HUSSAIN M.Shear strength in preexisting landslides[J]. J Geotech Geoenviron Eng, 2010, 136(7): 957-962.
    [5]
    SKEMPTON A W.Residual strength of clays in landslides, folded strata and the laboratory[J]. Géotechnique, 1985, 35(1): 3-18.
    [6]
    BROMHEAD E N, DIXON N.The field residual strength of London clay and its correlation with laboratory measurements, especially ring shear tests[J]. Géotechnique, 1986, 36(3): 449-452.
    [7]
    STARK T D, EID H T.Drained residual strength of cohesive soils[J]. J Geotech Geoenviron Eng, 1994, 20(5): 856-871.
    [8]
    TIWARI B, BRANDON T L, MARUI H, et al.Comparison of residual shear strengths from back analysis and ring shear tests on undisturbed and remolded specimens[J]. J Geotech Geoenviron Eng, 2005, 131(9): 1071-1079.
    [9]
    LUPINI J F, SKINNER A E, VAUGHAN P R.The drained residual strength of the cohesive soils[J]. Géotechnique, 1981, 31(2): 181-213.
    [10]
    GIBO S, EGASHIRA K, OHTSUBO M.Residual strength of smectite-dominated soils from the Kamenose landslide in Japan[J]. Can Geotech J, 1987, 24: 456-462.
    [11]
    刘动, 陈晓平. 滑带土环剪剪切面的微观观测与分析[J]. 岩土力学, 2013, 39(9): 1827-1834.
    (LIU Dong, CHEN Xiao-ping.Microscopic observation and analysis of ring shear surface of slip zone soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(9): 1827-1834. (in Chinese))
    [12]
    GIORGETTI C, CARPENTER B M, COLLETTINI C.Frictional behavior of talc-calcite mixtures[J]. J Geophys Res Soild Earth, 2015, 120: 6614-6633.
    [13]
    CHEN X F, MADDEN A S E, RECHES Z. The frictional strength of talc gouge in high-velocity shear experiments[J]. J Geophys Res Soild Earth, 2017, 122: 3661-3676.
    [14]
    ZHANG M, MCSAVENEY M J.Rock avalanche deposits store quantitative evidence on internal shear during runout[J]. Geophys Res Lett, 2017, 44: 8814-8821.
    [15]
    WANG Y F, DONG J J, CHENG Q G.Normal stress-dependent frictional weakening of large rock avalanche basal facies: implications for the rock avalanche volume effect[J]. J Geophys Res Soild Earth, 2018, 123: 3270-3282.
    [16]
    陈传胜, 张建敏, 文仕知. 基于有效垂直应力水平的滑带土强度参数适用性研究[J]. 岩石力学与工程学报, 2011, 30(8): 1705-1711.
    (CHEN Chuan-sheng, ZHANG Jian-min, WEN Shi-zhi.Study of applicability of strength parameters of sliding zone soil based on effective vertical stress level[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(8): 1705-1711. (in Chinese))
    [17]
    LIU Z C, DAI S, NING F L.Strength estimation for hydrate-bearing sediments from direct shear tests of hydrate-bearing sand and silt[J]. Geophys Res Lett, 2018, 45: 715-723.
    [18]
    VITHANA S B, NAKAMURA S, KIMURA S, et al. Effects of overconsolidation ratios on the shear strength of remoulded slip surface soils in ring shear[J]. Eng Geol, 2012, 131/132: 29-36.
    [19]
    TIWARI B, MARUI H.Objective oriented multistage ring shear test for shear strength of landslide soil[J]. J Geotech Geoenviron Eng, 2004, 130(2): 217-222.
    [20]
    EID H T, RABIE K H, WIJEWICKREME D.Drained residual shear strength at effective normal stresses relevant to soil slope stability analyses[J]. Eng Geol, 2016, 204: 94-107.
    [21]
    SHIBASAKI T, MATSUURA S, et al.Temperature- dependent residual shear strength characteristics of smectite-bearing landslide soils[J]. J Geophys Res Soild Earth, 2017, 122: 1449-1469.
    [22]
    SKEMPTON A W.Fourth Rankine Lecture: long term stability of clay slopes[J]. Géotechnique, 1964, 14(2): 77-101.
    [23]
    KAMAI T.Monitoring the process of ground failure in repeated landslides and associated stability assessments[J]. Eng Geol, 1998, 50: 71-4.
    [24]
    CARRUBBA P, FABBRO M D.Laboratory investigation on reactivated residual strength[J]. J Geotech Geoenviron Eng, 2008, 134(3): 302-315.
    [25]
    DEEPAK R B, YATABE R, BHANDARY N P.Study of preexisting shear surfaces of reactivated landslides from a strength recovery perspective[J]. Journal of Asian Earth Sciences, 2013, 77: 243-253.
    [26]
    GIBO S, EGASHIRA K, OHTSUBO M, et al.Strength recovery from residual state in reactivated landslides[J]. Géotechnique, 2002, 52(9): 683-686.
    [27]
    BISHOP A W, GREEN G E, GARGA V K, et al.A new ring shear apparatus and its application to the measurement of residual strength[J]. Géotechnique, 1971, 21(4): 273-328.
    [28]
    EID H T, STARK T D, DOERFLER C K.Effect of shear displacement rate on internal shear strength of a reinforced geosynthetic clay liner[J]. Geosynthetics International, 2000, 3: 219-239.
    [29]
    王顺, 项伟, 崔德山, 等. 不同环剪方式下滑带土残余强度试验研究[J]. 岩土力学, 2012, 33(10): 2967-2972.
    (WANG Shun, XIANG Wei, CUI De-shan, et al.Study of residual strength of slide zone soil under different ring-shear tests[J]. Rock and Soil Mechanics, 2012, 33(10): 2967-2972. (in Chinese))
  • Cited by

    Periodical cited type(18)

    1. 张国强,崔臻,颜天佑,张茂础,李建贺. 大埋深调水隧洞穿越活动断裂带变形破坏特征及适应性措施. 长江科学院院报. 2025(01): 152-161 .
    2. 杨继华,崔臻,万伟锋,刘振红,郭卫新. 引黄济宁工程隧洞穿越活动性断裂响应特征研究. 地下空间与工程学报. 2025(01): 283-292 .
    3. 王湃,王康,刘清,杨磊,屠文锋,王小龙,杨洋. 考虑保护层特性与重车偏压影响的引水隧洞底板混凝土受力变形特征. 科学技术与工程. 2025(07): 2931-2942 .
    4. 刘振国,王蓥森,郑长洲. 塑性混凝土防渗墙成槽与基坑开挖数值分析. 三峡大学学报(自然科学版). 2025(02): 1-11 .
    5. 张延杰,浦仕江,周辉,王锦国,吴顺川,丁秀丽. 滇中引水工程安全建设与高效运行关键技术研究若干进展——地下工程. 岩石力学与工程学报. 2024(02): 333-357 .
    6. 刘人太,马晨阳,杨磊,王博,马红均,陈孟军,马婉琳,屠文锋,鹿伟,谢云鹏. 一种兼具渗透与劈裂功能的复合注浆材料研发与现场试验. 岩石力学与工程学报. 2024(S2): 3651-3667 .
    7. 涂颖,晏育松,杨建华,章伟鹏,刘达. 深埋隧洞爆破开挖围岩振动能量分布特征与预测. 长安大学学报(自然科学版). 2023(01): 62-71 .
    8. 鲁瑞,冯现大,舒金会,吴文俊,李树忱. 大跨度变截面隧道围岩及中岩柱的稳定性. 济南大学学报(自然科学版). 2023(02): 241-246 .
    9. 卢玉斌,池磊,颜仁富. 滇中引水工程香炉山隧洞地应力特征及其活动构造响应. 工程技术研究. 2023(06): 17-19 .
    10. 司晓丽,雷军,谢金池,贾锋,赵书涛,聂金诚. 跨程海活动断裂带隧址区的地应力特征分析. 四川建筑. 2023(03): 154-157 .
    11. 李会芳,赵密,杜修力. 竖向成层介质中标量波传播问题的高精度人工边界条件. 工程力学. 2022(05): 55-64 .
    12. 王淑娟. 跨断层深海隧道衬砌变形规律及加固措施研究. 水利与建筑工程学报. 2022(03): 67-75 .
    13. 韩钢,黄书岭,丁秀丽,马旭强,张雨霆,何军. 香炉山隧洞5#支洞应急抢险段围岩参数反演及稳定性分析. 长江科学院院报. 2022(12): 56-61+67 .
    14. 周辉,赵海涛,李坚,赵成伟,刘文博,张传庆,王艳张. 香炉山隧洞龙蟠—乔后断裂带西支蠕滑特性与位错模式. 长江科学院院报. 2022(12): 97-104 .
    15. 韩晓玉,董志宏,付平,刘元坤. 基于HI应变计的首次断裂带岩体地应力监测. 长江科学院院报. 2022(12): 1-7 .
    16. 吕情绪. 保德煤矿地应力测试及分布特征分析. 煤矿机械. 2021(08): 99-102 .
    17. 洪开荣,冯欢欢. 近2年我国隧道及地下工程发展与思考(2019—2020年). 隧道建设(中英文). 2021(08): 1259-1280 .
    18. 亓文斌,田春艳,王飞飞,孟中华. 采矿引起地表塌陷过程中的地应力转移演化规律研究. 有色金属工程. 2021(12): 86-92 .

    Other cited types(9)

Catalog

    Article views (317) PDF downloads (293) Cited by(27)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return