• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHAN Ji-yan, CHEN Guo-xing, YANG Wei-lin, HU Qing-xing. Experimental study on dynamic shear modulus ratio and damping ratio of Suzhou quaternary sedimentary soil[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(3): 559-566.
Citation: ZHAN Ji-yan, CHEN Guo-xing, YANG Wei-lin, HU Qing-xing. Experimental study on dynamic shear modulus ratio and damping ratio of Suzhou quaternary sedimentary soil[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(3): 559-566.

Experimental study on dynamic shear modulus ratio and damping ratio of Suzhou quaternary sedimentary soil

More Information
  • Received Date: July 30, 2011
  • Published Date: March 29, 2012
  • Based on the comprehensive analysis of the marine and continental depositional environments and distribution characteristics, the comparative experiments are carried out on 311 undisturbed soil samples to study the dynamic shear modulus ratio and damping ratio of Suzhou quaternary sedimentary soil s. The results show that the influences of transgression and soil depth are significantly different for various Suzhou quaternary sedimentary soils on the relationship between shear modulus ratio and shear strain as well as between damping ratio and shear strain. The dynamic shear modulus ratio and damping ratio of marine clay at the depth of 0 ~ 30 m are smaller and larger than those of continental clay at the same elevation, respectively. However, a contrary relationship exists for the marine clay at the depth of 30 ~ 100 m. The depth has a distinct impact on the curves of dynamic shear modulus ratio with shear strain for the marine clay, silt clay, silt sand and continental silt sand as well as on the curves of damping ratio for the marine clay, silt clay and continental silt sand. The fitting parameters and recommended values for the average curves of dynamic shear modulus ratio and damping ratio are given after distinguishing the clay, silt clay, silt and silt sand layers from the depth of 30 m while keeping muddy soil and medium coarse sand as one layer.
  • [1]
    战吉艳 , 陈国兴 , 刘建达 . 苏州城区深软场地土剪切波速与土层深度的经验关系 [J]. 世界地震工程 , 2009, 25 (2): 11 – 17. (ZHAN Ji-yan, CHEN Guo-xing, LIU Jian-da. Empirical relationship between shear wave velocity and soil depth on deep soft sites in urban area of suzhou city[J]. World Earthquake Engineering, 2009, 25 (2): 11 – 17. (in Chinese))
    [2]
    王权民 , 李 刚 , 陈正汉 , 等 . 厦门砂土的动力特性研究 [J]. 岩土力学 , 2005, 26 (10): 1628 – 1632. (WANG Quan-min, LI Gang, CHEN Zheng-han, et al. Research on dynamic characteristics of sands in Xiamen city[J]. Rock and Soil Mechanics, 2005, 26 (10): 1628 – 1632. (in Chinese))
    [3]
    施春花 , 吕悦军 , 彭艳菊 , 等 . 北京地区粉质黏土土动力学参数的统计分析 [J]. 震灾防御技术 , 2009, 4 (1): 69 – 79. (SHI Chun-hua, LÜ Yue-jun, PENG Yan-ju, et al. Statistical analysis of dynamic parameters of silty clay in Beijing area[J]. Technology for Earthquake Disaster Prevention, 2009, 4 (1): 69 – 79. (in Chinese))
    [4]
    吕悦军 , 唐荣余 , 沙海军 . 渤海海底土类动剪切模量比和阻尼比试验研究 [J]. 防灾减灾工程学报 , 2003, 23 (2): 35 – 42. (LÜ Yue-jun, TANG Rong-yu, SHA Hai-jun. Experimental study on dynamic shear modulus ratio and damping ratio of the soils of bohai seafloor[J]. Journal of Disaster Prevention and Mitigation Engineering, 2003, 23 (2): 35 – 42. (in Chinese))
    [5]
    王志杰 , 骆亚生 , 王瑞瑞 , 等 . 不同地区原状黄土动剪切模量与阻尼比试验研究 [J]. 岩土工程学报 , 2010, 32 (9): 1464 – 1469. (WANG Zhi-jie, LUO Ya-sheng, WANG Rui-rui, et al. Experimental study on dynamic shear modulus and damping ratio of undisturbed loess in different regions[J]. Chinese Journal of Geotechnical Engineering, 2010, 32 (9): 1464 – 469. (in Chinese))
    [6]
    尚守平 , 卢华喜 , 任 慧 , 等 . 粉质黏土动剪切模量的试验对比研究 [J]. 岩土工程学报 , 2006, 28 (3): 410 – 414. (SHANG Shou-ping, LU Hua-xi, REN Hui, et al. Comparative study on dynamic shear modulus of silty clay[J]. Chinese Journal of Geotechnical Engineering, 2006, 28 (3): 410 – 414. (in Chinese))
    [7]
    张亚军 , 兰宏亮 , 崔永高 . 上海地区土动剪切模量比和阻尼比的统计研究 [J]. 世界地震工程 , 2010, 26 (2): 171 – 175. (ZHANG Ya-jun, LAN Hong-liang, CUI Yong-gao. Statistical studies on shear modulus ratios and damping ratios of soil in Shanghai area[J]. World Earthquake Engineering, 2010, 26 (2): 171 – 175. (in Chinese))
    [8]
    张效龙 , 金永德 , 孙永福 , 等 . 天津滨海滩涂土动剪切模量比和动阻尼比试验 [J]. 海洋地质动态 , 2005, 21 (8): 27 – 30. (ZHANG Xiao-long, JIN Yong-de, SUN Yong-fu, et al. Experimental study on dynamic shear modulus and damping ratio of coastal beach soils in Tianjin area[J]. Marine Geology Letters, 2005, 21 (8): 27 – 30. (in Chinese))
    [9]
    陈国兴 , 刘雪珠 , 朱定华 , 等 . 南京新近沉积土动剪切模量比与阻尼比的试验研究 [J]. 岩土工程学报 , 2006, 28 (8): 1023 – 1027. (CHEN Guo-xing, LIU Xue-zhu, ZHU Ding-hua, et al. Experimental studies on dynamic shear modulus ratio and damping ratio of recently deposited soils in Nanjing[J]. Chinese Journal of Geotechnical Engineering, 2006, 28 (8): 1023 – 1027. (in Chinese))
    [10]
    王炳辉 , 陈国兴 , 胡庆兴 . 南京细砂动剪切模量和阻尼比的试验研究 [J]. 世界地震工程 , 2010, 26 (3): 7 – 15. (WANG Bing-hui, CHEN Guo-xing, HU Qing-xing. Experiment of dynamic shear modulus and damping of Nanjing fine sand[J]. World Earthquake Engineering, 2010, 26 (3): 7 – 15. (in Chinese))
    [11]
    HARDIN B O, DRNEVICH V P. Shear modulus and damping in soils: design equations and curves[J]. Journal of Soil Mechanics and Foundation Engineering Division, 1972, 98 (7): 667 – 692.
    [12]
    QIAN X, GRAY D H, WOODS R D. Voids and granulometry: effects on shear modulus of unsaturated sands[J]. Journal of Geotechnical Engineering, 1993, 119 (2): 295 – 314.
    [13]
    STOKOE K H, HWANG S K, LEE N J, et al. Effects of various parameters on the stiffness and damping of soil at small to medium strains[C]// Sapporo, Japan: Proc, Int Symp, 1994.
    [14]
    ZHANG J, ANDRUS R D, JUANG C H. Normalized shear modulus and material damping ratio relationships[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131 (4): 453 – 464.
    [15]
    TRONCOSO J H, GARC S E. Ageing effects in the shear modulus of soils[J]. Soil Dynamics and Earthquake Engineering, 2000, 19 (8): 595 – 601.
    [16]
    袁晓铭 , 孙 静 . 非等向固结下砂土最大动剪切模量增长模式及 Hardin 公式修正 [J]. 岩土工程学报 , 2005, 27 (3): 264 – 269. (YUAN Xiao-ming, SUN Jing. Model of maximum dynamic shear modulus of sand under anisotropic consolidation and revision of Hardin's formula[J]. Chinese Journal of Geotechnical Engineering, 2005, 27 (3): 264 – 269. (in Chinese))
    [17]
    BORDEN R H, SHAO L, GUPTA A. Dynamic properties of piedment residual soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1996, 122 (10): 813 – 821.
    [18]
    陈国兴 , 王炳辉 , 刘建达 . 新近沉积土的动剪切模量和阻尼比试验研究 [J]. 地下空间与工程学报 , 2008, 4 (3): 539 – 543. (CHEN Guo-xing, WANG Bing-hui, LIU jian-da. Experimental study on dynamic shear modulus and damping ratio of recently deposited soils[J]. Chinese Journal of Underground Space and Engineering, 2008, 4 (3): 539 – 543. (in Chinese))
    [19]
    韦桃源 . 长江三角洲东部地区第四纪海侵地层、古气候古季风演化研究 [D] 上海 : 华东师范大学 , 2004. (WEI Tao-yuan. The quaternery transgression and paleoclimate- monsoon evolution of eastern Changjiang Delta, China[D]. Shanghai: East China Normal University, 2004. (in Chinese))
    [20]
    于振江 , 郭盛乔 , 梁晓红 , 等 . 长江三角洲 ( 江南 ) 地区第四纪海侵层的划分及时代归属 [J]. 地层学杂志 , 2005, 29 ( 增刊 ): 618 – 625. (YU Zhen-jiang, GUO Sheng-qiao, LIANG Xiao-hong, et al. Division and age assignment of the quaternary transgression layers in the Yangeze Delta Area(Southern Yangeze)[J]. Journal of Stratigraphy, 2005, 25 (S0): 618 – 625. (in Chinese))
    [21]
    陈国兴 , 朱定华 , 何启智 . GZZ-1 型自振柱试验机研制与性能试验 [J]. 地震工程与工程振动 , 2003, 23 (1): 110 – 114. (CHEN Guo-xing, ZHU Ding-hua, HE Qi-zhi. Development and property test of gzz-1 free vibration column test system[J]. Earthquake Engineering and Engineering Vibration, 2003, 23 (1): 110 – 114. (in Chinese) )
  • Related Articles

    [1]DI Hong-gui, ZHOU Shun-hua, GONG Quan-mei, WANG Pei-xin, XIAO Jun-hua. Differential settlement of metro tunnels and its zonal control in soft deposits[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk2): 74-79. DOI: 10.11779/CJGE2015S2016
    [2]WU Yue-dong, ZHANG Chao, ZHONG Guang-qiang. Control of differential settlement of road widening of expressways on soft soil foundation[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 652-655.
    [3]WENG Xiao-lin, ZHANG Chao, MA Hao-hao, SONG Wen-jia. Control criteria for differential settlement of widened road[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1705-1711.
    [4]WANG Tao, LIU Jin-Li. Beneficial factor of pit resilience recompression in view of reducing differential settlement of main building and podium[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 250-255.
    [5]Model tests on control techniques for differential settlement of road widening[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(1).
    [6]GAO Deng, ZHU Bin, CHEN Yunmin. Mechanism and analytic model of wrinkled geomembranes around circular structures subjected to differential settlement[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(8): 1126-1132.
    [7]ZHENG Gang, LIU Shuangju, PEI Yingjie, DIAO Yu. Piled raft with gap between pile top and raft to adjust differential settlement[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(5): 636-641.
    [8]LIU Tao, LIU Mingzhen. Discussion on "Experimental study to reduce differential settlements of raft of composite foundation with rigid piles"[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(10): 1593-1594.
    [9]LIU Donglin, ZHENG Gang, LIU Jinli, LI Jinxiu. Experimental study to reduce differential settlements of raft of composite foundation with rigid piles[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(4): 517-523.
    [10]Zhang Guo-xia, Zhang Nai-rui, Zhang Feng-lin. Nonlinear Differential Settlement Analysis[J]. Chinese Journal of Geotechnical Engineering, 1981, 3(3): 41-48.

Catalog

    Article views (1511) PDF downloads (652) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return