• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Ji-ru, HUA Chen, LUO Ming-xing, ZHANG Bi-wen. Behavior of particle breakage in calcareous sand during drained triaxial shearing[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1593-1602. DOI: 10.11779/CJGE202009003
Citation: ZHANG Ji-ru, HUA Chen, LUO Ming-xing, ZHANG Bi-wen. Behavior of particle breakage in calcareous sand during drained triaxial shearing[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1593-1602. DOI: 10.11779/CJGE202009003

Behavior of particle breakage in calcareous sand during drained triaxial shearing

More Information
  • Received Date: December 22, 2019
  • Available Online: December 07, 2022
  • Particle breakage is an important factor affecting the deformation and strength mechanism of granular soil. In order to study the particle breakage characteristics of calcareous sand during shearing and their influences on the deformation and shear strength, several drained triaxial shear tests are performed on three kinds of calcareous sand with different initial particle-size distributions under varied confining pressures. The results show that the initial fractal particle-size distribution maintains a relatively strict fractal characteristic in the triaxial shear process. This phenomenon can be well explained by the behavior that the broken particles in each particle fraction are mainly added to the adjacent next-level particle fraction. The stress-strain characteristics of calcareous sand are related to confining pressure and distribution of initial particle size. The lower the confining pressure, the more uneven the distribution of initial particle size, the more significant the dilatancy effect of calcareous sand. As the confining pressure increases, the dilatancy tendency of calcareous sand decreases and gradually transits to the shrinkage state. The breakage index of calcareous sand increases with the increase of stress and strain in the shearing process. The peak angle of internal friction decreases with the increase of breakage index, and finally tends toward a fixed value. A non-linear exponential function is used to describe the correlation between the peak angle of internal friction and the breakage index, and it represents the effect of particle crushing on the shear strength of calcareous sand.
  • [1]
    沈建华, 汪稔. 钙质砂的工程性质研究进展与展望[J]. 工程地质学报, 2010, 18(增刊1): 26-32. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-GCDZ201011001008.htm

    SHEN Jian-hua, WANG Ren. Study on engineering properties of calcareous sand[J]. Journal of Engineering Geology, 2010, 18(S1): 26-32. (in Chinese) https://cpfd.cnki.com.cn/Article/CPFDTOTAL-GCDZ201011001008.htm
    [2]
    尹振宇, 许强, 胡伟. 考虑颗粒破碎效应的粒状材料本构研究:进展及发展[J]. 岩土工程学报, 2012, 34(12): 2170-2180. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201212006.htm

    YIN Zhen-yu, XU Qiang, HU Wei. Constitutive relations for granular materials considering particle crushing: review and development[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2170-2180. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201212006.htm
    [3]
    张家铭, 汪稔, 石祥锋, 等. 侧限条件下钙质砂压缩和破碎特性试验研究[J]. 岩石力学与工程学报, 2005, 24(8): 3327-3331. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200518021.htm

    ZHANG Jia-ming, WANG Ren, SHI Xiang-feng, et al. Compression and crushing behavior of calcareous sand under confined compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(8): 3327-3331. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200518021.htm
    [4]
    秦月, 姚婷, 汪稔, 等. 基于颗粒破碎的钙质沉积物高压固结变形分析[J]. 岩土力学, 2014, 35(11): 3123-3128. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201411014.htm

    QIN Yue, YAO Ting, WANG Ren, et al. Particle breakage-based analysis of deformation law of calcareous sediments under high-pressure consolidation[J]. Rock and Soil Mechanics, 2014, 35(11): 3123-3128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201411014.htm
    [5]
    张季如, 张弼文, 胡泳, 等. 粒状岩土材料颗粒破碎演化规律的模型预测研究[J]. 岩石力学与工程学报, 2016, 35(9): 1898-1905. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201609019.htm

    ZHANG Ji-ru, ZHANG Bi-wen, HU Yong, et al. Predicting the particle breakage of granular geomaterials[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(9): 1898-1905. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201609019.htm
    [6]
    吕亚茹, 李治中, 李浪. 高应力状态下钙质砂的一维压缩特性及试验影响因素分析[J]. 岩石力学与工程学报, 2019, 38(增刊1): 3142-3150. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S1055.htm

    LÜ Ya-ru, LI Zhi-zhong, LI Lang. One-dimensional compression behavior of calcareous sand and its experimental technology under high stress conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S1): 3142-3150. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S1055.htm
    [7]
    COOP M R, SORENSEN K K, BODAS FREITAS T, et al. Particle breakage during shearing of a carbonate sand[J]. Géotechnique, 2004, 54(3): 157-163. doi: 10.1680/geot.2004.54.3.157
    [8]
    MIAO G, AIREY D. Breakage and ultimate states for a carbonate sand[J]. Géotechnique, 2013, 63(14): 1221-1229. doi: 10.1680/geot.12.P.111
    [9]
    何建乔, 魏厚振, 孟庆山, 等. 大位移剪切下钙质砂破碎演化特性[J]. 岩土力学, 2018, 39(1): 165-172. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201801021.htm

    HE Jian-qiao, WEI Hou-zhen, MENG Qing-shan, et al. Evolution of particle breakage of calcareous sand under large displacement shearing[J]. Rock and Soil Mechanics, 2018, 39(1): 165-172. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201801021.htm
    [10]
    黄宏翔, 陈育民, 王建平, 等. 钙质砂抗剪强度特性的环剪试验[J]. 岩土力学, 2018, 39(6): 2082-2088. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201806021.htm

    HUANG Hong-xiang, CHEN Yu-min, WANG Jian-ping, et al. Ring shear tests on shear strength of calcareous sand[J]. Rock and Soil Mechanics, 2018, 39(6): 2082-2088. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201806021.htm
    [11]
    纪文栋, 张宇亭, 王洋, 等. 循环单剪下珊瑚钙质砂和普通硅质砂剪切特性对比研究[J]. 岩土力学, 2018, 39(增刊1): 282-288. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2018S1035.htm

    JI Wen-dong, ZHANG Yu-ting, WANG Yang, et al. Comparative study of shear performance between coral sand and siliceous sand in cycles simple shear test[J]. Rock and Soil Mechanics, 2018, 39(S1): 282-288. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2018S1035.htm
    [12]
    蔡正银, 侯贺营, 张晋勋, 等. 考虑颗粒破碎影响的珊瑚砂临界状态与本构模型研究[J]. 岩土工程学报, 2019, 41(6): 989-995. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201906002.htm

    CAI Zheng-yin, HOU He-ying, ZHANG Jin-xun, et al. Critical state and constitutive model for coral sand considering particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 989-995. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201906002.htm
    [13]
    蔡正银, 侯贺营, 张晋勋, 等. 密度与应力水平对珊瑚砂颗粒破碎影响试验研究[J]. 水利学报, 2019, 50(2): 184-191. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201902004.htm

    CAI Zheng-yin, HOU He-ying, ZHANG Jin-xun, et al. Experimental study on the influence of density and stress level on particle breakage of coral sand[J]. Journal of Hydraulic Engineering, 2019, 50(2): 184-191. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201902004.htm
    [14]
    王刚, 叶沁果, 查京京. 珊瑚礁砂砾料力学行为与颗粒破碎的试验研究[J]. 岩土工程学报, 2018, 40(5): 802-810. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201805006.htm

    WANG Gang, YE Qin-guo, ZHA Jing-jing. Experimental study on mechanical behavior and particle crushing of coral sand-gravel fill[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 802-810. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201805006.htm
    [15]
    陈火东, 魏厚振, 孟庆山, 等. 颗粒破碎对钙质砂的应力–应变及强度影响研究[J]. 工程地质学报, 2018, 26(6): 1490-1498. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201806011.htm

    CHEN Huo-dong, WEI Hou-zhen, MENG Qing-shan, et al. The study on stress-strain-strength behavior of calcareous sand with particle breakage[J]. Journal of Engineering Geology, 2018, 26(6): 1490-1498. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201806011.htm
    [16]
    刘汉龙, 肖鹏, 肖杨, 等. MICP胶结钙质砂动力特性试验研究[J]. 岩土工程学报, 2018, 40(1): 38-45. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801003.htm

    LIU Han-long, XIAO Peng, XIAO Yang, et al. Dynamic behaviors of MICP-treated calcareous sand in cyclic tests[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 38-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801003.htm
    [17]
    王刚, 查京京, 魏星. 循环三轴应力路径下钙质砂颗粒破碎演化规律[J]. 岩土工程学报, 2018, 41(4): 755-760. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904025.htm

    WANG Gang, ZHA Jing-jing, WEI Xing. Evolution of particle crushing of carbonate sand under cyclic triaxial stress path[J]. Chinese Journal of Geotechnical Engineering, 2018, 41(4): 755-760. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904025.htm
    [18]
    张家铭, 张凌, 蒋国盛, 等. 剪切作用下钙质砂颗粒破碎试验研究[J]. 岩土力学, 2008, 29(10): 2789-2793. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200810039.htm

    ZHANG Jia-ming, ZHANG Ling, JIANG Guo-sheng, et al. Research on particle crushing of calcareous sands under triaxial shear[J]. Rock and Soil Mechanics, 2008, 29(10): 2789-2793. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200810039.htm
    [19]
    张晨阳, 谌民, 胡明鉴, 等. 细颗粒组分含量对钙质砂抗剪强度的影响[J]. 岩土力学, 2019, 40(增刊1): 195-202. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2019S1029.htm

    ZHANG Chen-yang, CHEN Min, HU Ming-jian, et al. Effect of fine particles content on shear strength of calcareous sand[J]. Rock and Soil Mechanics, 2019, 40(S1): 195-202. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2019S1029.htm
    [20]
    沈扬, 沈雪, 俞演名, 等. 粒组含量对钙质砂压缩变形特性影响的宏细观研究[J]. 岩土力学, 2019, 40(10): 3733-3740. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201910006.htm

    SHEN Yang, SHEN Xue, YU Yan-ming, et al. Macro-micro study of compressive deformation properties of calcareous sand with different particle fraction contents[J]. Rock and Soil Mechanics, 2019, 40(10): 3733-3740. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201910006.htm
    [21]
    TURCOTTE D L. Fractals in geology and geophysics[J]. Pure Application Geophysics, 1989, 131(1/2): 171-196.
    [22]
    TYLER S W, WHEATCRAFT S W. Fractal scaling of soil particle-size distributions: analysis and limitations[J]. Soil Science Society of America Journal, 1992, 56(2): 362-369.
    [23]
    张季如, 胡泳, 张弼文, 等. 石英砂砾破碎过程中粒径分布的分形行为研究[J]. 岩土工程学报, 2015, 37(5): 784-791. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201505004.htm

    ZHANG Ji-ru, HU Yong, ZHANG Bi-wen, et al. Fractal behavior of particle-size distribution during particle crushing of quartz sand and gravel[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 784-791. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201505004.htm
    [24]
    HARDIN B O. Crushing of soil particles[J]. Journal of Geotechnical Engineering, 1985, 111(10): 1177-1192.
    [25]
    TURCOTTE D L. Fractals and fragmentation[J]. Journal of Geophysical Research, 1986, 91(B2): 1921-1926.
    [26]
    纪文栋, 张宇亭, 裴文斌, 等. 加载方式和应力水平对珊瑚砂颗粒破碎影响的试验研究[J]. 岩石力学与工程学报, 2018, 37(8): 1953-1961. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201808018.htm

    JI Wen-dong, ZHANG Yu-ting, PEI Wen-bin, et al. Influence of loading method and stress level on the particle crushing of coral calcareous sand[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(8): 1953-1961. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201808018.htm
    [27]
    张季如, 祝杰, 黄文竞. 侧限压缩下石英砂砾的颗粒破碎特性及其分形描述[J]. 岩土工程学报, 2008, 30(6): 783-789. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200806001.htm

    ZHANG Ji-ru, ZHU Jie, HUANG Wen-jing. Crushing and fractal behaviors of quartz sand-gravel particles under confined compression[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(6): 783-789. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200806001.htm
    [28]
    VESIC A S, CLOUGH G W. Behavior of granular materials under high stresses[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1968, 94(SM3): 661-688.
  • Related Articles

    [1]A study of multi-field coupling continuum numerical method for exploiting CH4 by CO2 replacement in deep-sea formation[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240762
    [2]ZHU Ziyi, REN Lei, GAO Guoyao, GUO Wei, REN Yuxiao, FENG Shouzhong, ZHU Xianpeng. Multi-field coupling theoretical model for artificial freezing of coastal soils under seepage[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 171-176. DOI: 10.11779/CJGE2024S20031
    [3]ZHAO Jingbo, CAO Shengfei, LI Jiebiao, CHEN Liang, COLLIN Frederic, LIU Yuemiao, ZHANG Qi. Numerical simulation of coupled thermo-hydro-mechanical (THM) behavior of buffer material in the China-Mock-up tests at engineering scale[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1712-1722. DOI: 10.11779/CJGE20230679
    [4]LU Shifeng, FENG Shijin. Multi-field coupled model for solid-phase degradable soils and its numerical implementation using finite volume method[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1438-1450. DOI: 10.11779/CJGE20220486
    [5]LING Xian-zhang, LUO Jun, GENG Lin, TANG Liang. Coupled hydro-thermo-deformation frost heave model for unsaturated expansive soils in seasonally frozen soil regions[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(7): 1255-1265. DOI: 10.11779/CJGE202207006
    [6]ZHAO Chang, HE Xiang, HU Ran, LIU Han-long, XIE Qiang, WANG Yu-ze, WU Huan-ran, XIAO Yang. Kinetic theory and numerical simulation of biomineralization[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1096-1105. DOI: 10.11779/CJGE202206014
    [7]HAN Bo-wen, CAI Guo-qing, LI Jian, ZHAO Cheng-gang. Hydro-mechanical coupling bounding surface model for unsaturated soils considering bonding effect of particles[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2059-2068. DOI: 10.11779/CJGE202011011
    [8]LIU Wu. Coupled damage and friction model for persistent fractured rocks considering multi-scale structures[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 147-154. DOI: 10.11779/CJGE201801015
    [9]JIANG Ming-jing, ZHANG Fu-guang, SUN Yu-gang, ZHANG Wang-cheng. DEM simulation of mechanical behaviour and bond breakage of different cemented sands[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 1969-1976.
    [10]PENG Peng, SHAN Zhi-gang, SONG Han-zhou, DONG Yu-fan. Coupling model for assessing anti-seepage behaviors of curtain of dam foundation[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1847-1853.

Catalog

    Article views (397) PDF downloads (421) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return