• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Dong, JIANG Fu-xing, CHEN Yang, SHU Cou-xian, TIAN Zhao-jun, WANG Yong, WANG Wei-bin. Mechanism of rockburst induced by “dynamic-static” stress effect in water-rich working face of deep well[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1714-1722. DOI: 10.11779/CJGE201809019
Citation: LI Dong, JIANG Fu-xing, CHEN Yang, SHU Cou-xian, TIAN Zhao-jun, WANG Yong, WANG Wei-bin. Mechanism of rockburst induced by “dynamic-static” stress effect in water-rich working face of deep well[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1714-1722. DOI: 10.11779/CJGE201809019

Mechanism of rockburst induced by “dynamic-static” stress effect in water-rich working face of deep well

More Information
  • Received Date: February 08, 2018
  • Published Date: September 24, 2018
  • The occurrence of rockburst is a result of multi-factor induction. Taking coal face No. 1301 of Yuncheng Coal Mine as the engineering background, the mechanism of new rockburst induced by the "dynamic-static" stress effect is investigated ("dynamic" refers to that during mining of the working face, the movement of the overlying strata applies advanced support pressures and disturbance on the coal body in front of them; "static"refers to that after water inrush of the water storehouse, the part above the coal seam is equivalent to mining a liberated layer, and part of the stresses on the overlying strata transfers to the surrounding in the water inrush areas, and makes the static stress surrounding the water inrush areas increase). The stress source of rockburst, the lithological change characteristics of coal body caused by inrush water and the dynamic influence of mining face are studied by using theoretical analysis, field detection, engineering tests and numerical simulation. The following conclusions are drawn: (1) The inrush water breaks the stress balance of the original rock and causes high static stress around it, which is the static stress source of rockburst. (2) After 30 days of soaking, the strength of coal is greatly reduced, which increases the risk of rockburst under the same stress. (3) For mining of working face No. 1301, the advanced support pressure is the source of dynamic stress of rockburst. The superposition of advanced bearing pressure and high static stress increase the concentration of stress, and the dynamic disturbance of overlying strata to high-stress concentration areas further increases the risk of rockburst. The proposed method is of important reference significance for the anti-impact evaluation of water-rich working face.
  • [1]
    姜福兴. 采场覆岩空间结构观点及应用研究[J]. 采矿与安全工程学报, 2006, 23(1): 30-33.
    (JIANG Fu-xing.Viewpoint of spatial structures of overlying strata and its application in coalmine[J]. Journal of Mining & Safety Engineering, 2006, 23(1): 30-33. (in Chinese))
    [2]
    史红, 姜福兴. 充分采动阶段覆岩多层空间结构支承压力研究[J]. 煤炭学报, 2009, 34(5): 605-609.
    (SHI Hong, JIANG Fu-xing.The dynamic abutment pressure rule of overlying strata spatial structures at the phases sub-critical mining[J]. Journal of China Coal Society, 2009, 34(5): 605-609. (in Chinese))
    [3]
    姜福兴, 杨淑华. 采场覆岩空间破裂与采动应力场的微震探测研究[J]. 岩土工程学报, 2003, 25(1): 23-25.
    (JIANG Fu-xing, YANG Shu-hua.Microseismicmonito ring study o n spatial structure of overlying strata and mining pressure field in longw all face[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(1): 23-25. (in Chinese))
    [4]
    宋振骐, 卢国志, 夏洪春. 一种计算采场支承压力分布的新算法[J]. 山东科技大学学报(自然科学版), 2006, 25(1): 1-4.
    (SONG Zhen-qi, LU Guo-zhi, XIA Hong-chun.A new algorithm for calculating the distribution of face abutment pressure[J]. Journal of Shandong University of Science and Technology (Natural Science), 2006, 25(1): 1-4. (in Chinese))
    [5]
    夏永学, 蓝航, 毛德兵, 等. 基于微震监测的超前支承压力分布特征研究[J]. 中国矿业大学学报, 2011, 40(6): 868-873.
    (XIA Yong-xue, LAN Hang, MAO De-bing, et al.Study of the lead abutment pressure distribution base on microseismic monitoring[J]. Journal of Chian University of Mining & Technology, 2011, 40(6): 868-873. (in Chinese))
    [6]
    刘金海, 姜福兴, 王乃国, 等. 深井特厚煤层综放工作面支承压力分布特征的实测研究[J]. 煤炭学报, 2011, 36(增刊1): 18-22.
    (LIU Jin-hai, JIANG Fu-xing, WANG Nai-guo, et al.Survey on abutment pressure distribution of fully mechanized caving face in extra-thick coal seam of deep shaft[J]. Journal of China Coal Society, 2011, 36(S1): 18-22. (in Chinese))
    [7]
    齐庆新, 欧阳振华, 赵善坤, 等. 我国冲击地压矿井类型及防治方法研究[J]. 煤炭科学技术, 2014, 42(10): 1-5.
    (QI Qing-xin, OUYANG Zhen-hua, ZHAO Shan-kun, et al.Study on types of rockburst mine and prevention methods in China[J]. Coal Scienceand Technology, 2014, 42(10): 1-5. (in Chinese))
    [8]
    潘俊锋, 宁宇, 毛德兵, 等. 煤矿开采冲击地压启动理论[J]. 岩石力学与工程学报, 2012, 31(3): 586-596.
    (PAN Jun-feng, NING Yu, MAO De-bing, et al.Theory of rockburst start-up during coal mining[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(3): 586-596. (in Chinese))
    [9]
    张开智, 夏均民. 冲击危险性综合评价的变权识别模型[J]. 岩石力学与工程学报, 2004, 23(20): 3480-3483.
    (ZHANG Kai-zhi, XIA Jun-min.Weight-variable identification model of comprehensive evaluation on burst liability of coal[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(20): 3480-3483. (in Chinese))
    [10]
    刘金海, 姜福兴, 冯涛. C型采场支承压力分布特征的数值模拟研究[J]. 岩土力学, 2010, 31(12): 4011-4015.
    (LIU Jin-hai, JIANG Fu-xing, FENG Tao.Numerical simulation of abutment pressure distribution of C-shaped stope[J]. Rock and Soil Mechanics, 2010, 31(12): 4011-4015. (in Chinese))
    [11]
    刘长友, 黄炳香, 孟祥军, 等. 超长孤岛综放工作面支承压力分布规律研究[J]. 岩石力学与工程学报, 2007, 26(增1): 2761-2766.
    (LIU Chang-you, HUANG Bing-xiang, MENG Xiang-jun, et al.Research on abutment pressure distribution law of overlength isolated fully-mechanized top coal caving face[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S1): 2761-2766. (in Chinese))
    [12]
    司荣军, 王春秋, 谭云亮. 采场支承压力分布规律的数值模拟研究[J]. 岩土力学, 2007, 28(2): 351-354.
    (SI Rong-jun, WANG Chun-qiu, TAN Yun-liang.Numerical simulation of abutment pressure distribution laws of working faces[J]. Rock and Soil Mechanics, 2007, 28(2): 351-354. (in Chinese))
    [13]
    伍永平, 高喜才, 解盘石, 等. 坚硬特厚煤层顶分层综采工作面支承压力分布特征研究[J]. 矿业安全与环保, 2010, 37(4): 8-10.
    (WU Yong-ping, GAO Xi-cai, XIE Pan-shi, et al.Research on abutment pressure distribution law in fully mechanized caving face on top slice of hard and very thick seam[J]. Mining Safety & Environmental Protection, 2010, 37(4): 8-10. (in Chinese))
    [14]
    姜福兴, 马其华. 深部长壁工作面动态支承压力极值点的求解[J]. 煤炭学报, 2002, 27(3): 273-275.
    (JIANG Fu-xing, MA Qi-hua.Mechanical solution of the maximum point of dynamic abutment pressure under deep long-wall working face[J]. Journal of China Coal Society, 2002, 27(3): 273-275. (in Chinese))
  • Related Articles

    [1]WANG Ying, LIU Jin, MA Xiao-fan, QI Chang-qing, LU Hong-ning. Immersion effect of polyurethane-reinforced sand based on NMR[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2342-2349. DOI: 10.11779/CJGE202012023
    [2]WANG Yong-xin, SHAO Sheng-jun, HAN Chang-ling, LI Jun. Application of sand drain immersion tests on collapsible loess[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 159-164. DOI: 10.11779/CJGE2018S1026
    [3]ZHU Yan-peng, YANG Kui-bin, WANG Hai-ming, YANG Xiao-hui. Preliminary exploration of tests on effect of micro-immersion on negative skin friction of pile foundation[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 1-7. DOI: 10.11779/CJGE2018S1001
    [4]SHAO Sheng-jun, LI Jun, LI Guo-liang, WANG Xin-dong, JIN Bao-cheng, SHAO Shuai. Field immersion tests on tunnel in large-thickness collapsible loess[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1395-1404. DOI: 10.11779/CJGE201808004
    [5]SHAO Sheng-jun, LI Jun, SHAO Jiang, HUANG Shuang-lin, WANG Yong-xin, CHEN Fei. In-situ sand well immersion tests on self-weight collapsible loess site with large depth[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(9): 1549-1558. DOI: 10.11779/CJGE201609001
    [6]GAO Shuai, LUO Ya-sheng, HU Hai-jun, WANG Peng-cheng, ZHANG Shuai, LIU Jian-long. Triaxial tests on water immersion of unsaturated and undisturbed loess[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(7): 1313-1318. DOI: 10.11779/CJGE201507019
    [7]MA Yan, WANG Jia-ding, PENG Shu-jun, LI Yong-wei, WANG Jun-hai, CHEN Wei. Immersion tests on characteristics of deformation of self-weight collapsible loess under overburden pressure[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 537-546. DOI: 10.11779/CJGE201403017
    [8]LI Guang-xin. Static pore water pressure and excess pore water pressure— A discussion with Mr. CHEN Yu-jiong[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(5): 957-960.
    [9]LIU Fei, ZHENG Jian-guo. Immersion tests on PHC piles in collapsible loess[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 362-366.
    [10]HUANG Xuefeng, CHEN Zhenghan, HA Shuang, XUE Saiguang, SUN Shuxun, XU Yiming, JIN Xueju, ZHU Yuanqing. Large area field immersion tests on characteristics of deformation of self weight collapse loess under overburden pressure[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 382-389.
  • Cited by

    Periodical cited type(16)

    1. 贺虎,董近兴,乔伟,程香港,刘强,张军,窦林名,张惟昭. 巨厚含水层大流量疏降应力扰动及诱冲机理. 采矿与安全工程学报. 2025(01): 108-116 .
    2. 史文豹,许庆钊,常聚才,苗壮,李传明,齐潮. 不同含水率细砂岩软化效应及裂纹演化规律. 中国安全生产科学技术. 2024(03): 118-125 .
    3. 刘怀东,刘长友,杨培举,王晨鸿,杨敬轩. 向斜构造区特厚煤层开采覆岩结构稳定性及突水压架机理. 煤炭学报. 2024(09): 3745-3758 .
    4. 王岗,于晓杰,王爱文,肖晓春,王永,丁鑫,王维斌,徐赠俊,杜璐璐. 覆岩承压含水层疏水应力场演化规律电荷监测研究. 煤田地质与勘探. 2024(10): 106-118 .
    5. 曹安业,白贤栖,蔡武,温颖远,李许伟,马祥,黄锐. 覆岩厚度变化应力异常机制及冲击矿压诱发机理. 岩土工程学报. 2023(03): 512-520 . 本站查看
    6. 张金魁,侯涛,李民,李鹏,顾合龙. 动力扰动诱发煤层大巷冲击地压机理及其防控技术. 煤炭工程. 2022(02): 62-66 .
    7. 王卫宏. 煤矿井下顶板疏水综采面冲击地压原因分析及治理. 山西冶金. 2022(04): 124-125 .
    8. 夏永学,潘俊锋,谢非,孙晓东,陆闯,张晨阳,刘少虹. 井下超长水平孔分段压裂防冲机理及效果. 煤炭学报. 2022(S1): 115-124 .
    9. 程晓之,赵德强. 鄂尔多斯矿区深部顶板运移及采动扰动规律研究. 内蒙古煤炭经济. 2021(07): 1-4 .
    10. 夏永学,潘俊锋,谢非,孙晓东,陆闯,张晨阳,刘少虹. 井下超长水平孔分段压裂防冲机理及效果. 煤炭学报. 2021(S1): 130-139 .
    11. 王博,朱斯陶,魏全德,顾颖诗,李占成,张斌. 顶板疏水快速回采工作面冲击地压机理及防治措施. 煤矿安全. 2020(07): 205-209 .
    12. 王博,姜福兴,朱斯陶,张修峰,尚晓光,顾颖诗,吴震. 深井工作面顶板疏水区高强度开采诱冲机制及防治. 煤炭学报. 2020(09): 3054-3064 .
    13. 周大伟. 综采工作面超前应力集中区支护优化. 当代化工研究. 2020(19): 74-75 .
    14. 来兴平,张帅,代晶晶,王泽阳,许慧聪. 水力耦合作用下煤岩多尺度损伤演化特征. 岩石力学与工程学报. 2020(S2): 3217-3228 .
    15. 贺虎,郑有雷,张雄,吴修光,桂兵. 基于动静应力分析的复杂工作面冲击危险评价. 煤炭科学技术. 2019(07): 265-270 .
    16. 吕可,王金安,李鹏波. 冲击地压巷道周边动力放大效应及支护参数调控策略. 采矿与安全工程学报. 2019(06): 1168-1177 .

    Other cited types(14)

Catalog

    Article views (226) PDF downloads (144) Cited by(30)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return