• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CAO Anye, BAI Xianxi, CAI Wu, WEN Yingyuan, LI Xuwei, MA Xiang, HUANG Rui. Mechanism for stress abnormality and rock burst in variation zone of roof-stratum thickness[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 512-520. DOI: 10.11779/CJGE20211194
Citation: CAO Anye, BAI Xianxi, CAI Wu, WEN Yingyuan, LI Xuwei, MA Xiang, HUANG Rui. Mechanism for stress abnormality and rock burst in variation zone of roof-stratum thickness[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 512-520. DOI: 10.11779/CJGE20211194

Mechanism for stress abnormality and rock burst in variation zone of roof-stratum thickness

More Information
  • Received Date: October 12, 2021
  • Available Online: March 15, 2023
  • The roof stratum structure is one of the main factors affecting coal burst, and the coal burst is also easily induced in the variation zone of roof-stratum thickness. This phenomenon is gradually severe in deep mining areas in Inner Mongolia. The stress distribution in the variation zone of roof-stratum thickness is analyzed based on the theory of elastic mechanics. The FLAC3D numerical modeling is then performed to investigate the influences of the variation of stratum thickness on the stress distribution characteristics and energy evolution in the coal seam. The coal burst mechanism due to the variation of stratum thickness is finally released. The results show that the tectonic stress in the thick roof zone is larger than that in the thin roof zone, and the stress gradient increases with the increasing variation in the stratum thickness or the roof properties. In the variation zone of roof-stratum thickness, the superposition of the advanced abutment pressure and the increasing tectonic stress results in a high-stress concentration area. A higher coal burst risk might thus occur in the roadway near the longwall in the roof variation zone to the thicker roof zone, where more intensive elastic energy is released in the coal/rock mass. The comparative analysis of two field cases shows that more seismic activities occur in the variation zone of stratum thickness and from the variation zone to the thicker stratum zone, and the roadway damage is obvious, which is consistent with the theoretical analysis.
  • [1]
    窦林名, 周坤友, 宋士康, 等. 煤矿冲击矿压机理、监测预警及防控技术研究[J]. 工程地质学报, 2021, 29(4): 917-932. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202104002.htm

    DOU Linming, ZHOU Kunyou, SONG Shikang, et al. Occurrence mechanism, monitoring and prevention technology of rockburst in coal mines[J]. Journal of Engineering Geology, 2021, 29(4): 917-932. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202104002.htm
    [2]
    李东, 姜福兴, 陈洋, 等. 深井富水工作面"动—静"应力效应诱发冲击地压机理研究[J]. 岩土工程学报, 2018, 40(9): 1714-1722. doi: 10.11779/CJGE201809019

    LI Dong, JIANG Fuxing, CHEN Yang, et al. Mechanism of rockburst induced by "dynamic-static" stress effect in water-rich working face of deep well[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1714-1722. (in Chinese) doi: 10.11779/CJGE201809019
    [3]
    GUO W Y, GU Q H, TAN Y L, et al. Case studies of rock bursts in tectonic areas with facies change[J]. Energies, 2019, 12(7): 1330-1341. doi: 10.3390/en12071330
    [4]
    孙振武. 煤层厚度局部变化区域地应力场分布的数值模拟[J]. 矿山压力与顶板管理, 2003, 20(3): 95-97, 100. doi: 10.3969/j.issn.1673-3363.2003.03.037

    SUN Zhenwu. Numerical simulation on stress field distribution in partial transformation area of coal seam height[J]. Ground Pressure and Strata Control, 2003, 20(3): 95-97, 100. (in Chinese) doi: 10.3969/j.issn.1673-3363.2003.03.037
    [5]
    ÁLVAREZ-FERNÁNDEZ M I, GONZÁLEZ-NICIEZA C, ÁLVAREZ-VIGIL A E, et al. Numerical modelling and analysis of the influence of local variation in the thickness of a coal seam on surrounding stresses: application to a practical case[J]. International Journal of Coal Geology, 2009, 79(4): 157-166. https://www.cnki.com.cn/Article/CJFDTOTAL-XMSW202103004.htm
    [6]
    ZHU G G, DOU L M, LI Z L, et al. Mining-induced stress changes and rock burst control in a variable-thickness coal seam[J]. Arabian Journal of Geosciences, 2016, 9(5): 365. doi: 10.1007/s12517-016-2356-3
    [7]
    南存全, 丁维波, 吕进国, 等. 采动影响下煤厚变异区超前支承压力变化规律的数值模拟[J]. 安全与环境学报, 2018, 18(6): 2200-2204. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201806027.htm

    NAN Cunquan, DING Weibo, LÜ Jinguo, et al. Numerical simulation for the changing regularity of the leading support pressure in the coal seam variety region under the mining impact[J]. Journal of Safety and Environment, 2018, 18(6): 2200-2204. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201806027.htm
    [8]
    王勇, 杨毕, 邓川, 等. 煤厚变化对冲击地压影响的数值模拟分析[J]. 煤矿安全, 2017, 48(5): 198-201. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201705055.htm

    WANG Yong, YANG Bi, DENG Chuan, et al. Numerical simulation analysis of influence of coal thickness change on rock burst[J]. Safety in Coal Mines, 2017, 48(5): 198-201. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201705055.htm
    [9]
    赵同彬, 郭伟耀, 谭云亮, 等. 煤厚变异区开采冲击地压发生的力学机制[J]. 煤炭学报, 2016, 41(7): 1659-1666. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201607009.htm

    ZHAO Tongbin, GUO Weiyao, TAN Yunliang, et al. Mechanics mechanism of rock burst caused by mining in the variable region of coal thickness[J]. Journal of China Coal Society, 2016, 41(7): 1659-1666. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201607009.htm
    [10]
    蔡美峰. 岩石力学与工程[M]. 2版. 北京: 科学出版社, 2013.

    CAI Meifeng. Rock Mechanics and Engineering[M]. 2nd ed. Beijing: Science Press, 2013. (in Chinese)
    [11]
    CAO W Z, SHI J Q, DURUCAN S, et al. Gas-driven rapid fracture propagation under unloading conditions in coal and gas outbursts[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 130: 104325. doi: 10.1016/j.ijrmms.2020.104325
    [12]
    许家林, 钱鸣高, 马文顶, 等. 岩层移动模拟研究中加载问题的探讨[J]. 中国矿业大学学报, 2001, 30(3): 252-255. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200103009.htm

    XU Jialin, QIAN Minggao, MA Wending, et al. Discussion on loading problem in physical and numerical simulation of strata movement[J]. Journal of China University of Mining & Technology, 2001, 30(3): 252-255. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200103009.htm
    [13]
    张朝鹏. 不同赋存深度煤岩力学参数差异性及采动力学行为研究[D]. 成都: 四川大学, 2017.

    ZHANG Chaopeng. Differences of Coal Mechanical Parameters and Mining Induced Mechanical Behavior Induced by Different Depths[D]. Chengdu: Sichuan University, 2017. (in Chinese)
    [14]
    王路军, 周宏伟, 荣腾龙, 等. 深部煤体采动应力场演化规律及扰动特征研究[J]. 岩石力学与工程学报, 2019, 38(增刊1): 2944-2954. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S1035.htm

    WANG Lujun, ZHOU Hongwei, RONG Tenglong, et al. Stress field evolution law and disturbance characteristic of coal at depth under mining[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S1): 2944-2954. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S1035.htm
    [15]
    谢和平, 鞠杨, 黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J]. 岩石力学与工程学报, 2005, 24(17): 3003-3010. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200517000.htm

    XIE Heping, JU Yang, LI Liyun. Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3003-3010. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200517000.htm
    [16]
    窦林名, 何江, 曹安业, 等. 煤矿冲击矿压动静载叠加原理及其防治[J]. 煤炭学报, 2015, 40(7): 1469-1476. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201507001.htm

    DOU Linming, HE Jiang, CAO Anye, et al. Rock burst prevention methods based on theory of dynamic and static combined load induced in coal mine[J]. Journal of China Coal Society, 2015, 40(7): 1469-1476. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201507001.htm
    [17]
    CAI W, DOU L M, SI G Y, et al. A new seismic-based strain energy methodology for coal burst forecasting in underground coal mines[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 123: 104086.
    [18]
    苗小虎, 姜福兴, 王存文, 等. 微地震监测揭示的矿震诱发冲击地压机理研究[J]. 岩土工程学报, 2011, 33(6): 971-976. http://cge.nhri.cn/cn/article/id/14040

    MIAO Xiaohu, JIANG Fuxing, WANG Cunwen, et al. Mechanism of microseism-inducd rock burst revealed by microseismic monitoring[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 971-976. (in Chinese) http://cge.nhri.cn/cn/article/id/14040
  • Related Articles

    [1]YU Haitao, XU Hualin, WEI Yibo. Seismic fragility analysis method for evaluation of dislocation resistance of tunnels crossing active fault zones[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(10): 2060-2068. DOI: 10.11779/CJGE20230610
    [2]YANG Zhong-ping, LIU Shu-lin, LIU Yong-quan, HE Chun-mei, YANG Wei. Dynamic stability analysis of bedding and toppling rock slopes under repeated micro-seismic action[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1277-1286. DOI: 10.11779/CJGE201807014
    [3]WEN Li-feng, CHAI Jun-rui, XU Zeng-guang, QIN Yuan, LI Yan-long. Preliminary statistical analysis of behavior of concrete face rockfill dams[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1312-1320. DOI: 10.11779/CJGE201707018
    [4]ZHENG Gang, DU Yi-ming, DIAO Yu, DENG Xu, ZHU Gan-ping, ZHANG Li-ming. Influenced zones for deformation of existing tunnels adjacent to excavations[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 599-612. DOI: 10.11779/CJGE201604003
    [5]YU Qun, TANG Chun-An, LI Lian-chong, LI Hong, CHENG Guan-wen. Nucleation process of rockbursts based on microseismic monitoring of deep-buried tunnels for Jinping Ⅱ Hydropower Station[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2315-2322. DOI: 10.11779/CJGE201412021
    [6]CHEN Wei, WU Caide, HUANG Jifeng, SHEN Junjie, WANG Dawei. Theory, application and tests of 3D analysis method for deep foundation pits[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(5): 729-735.
    [7]LU Caiping, DOU Linming, WU Xingrong, WANG Huiming, QIN Yuhong. Frequency spectrum analysis on microseismic monitoring and signal differentiation of rock material[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 772-775.
    [8]QIAN Hui, XI Linping, XIAO Li, ZHAO Xiaoli. Analysis of the formation of abnormal substances discharged from drainage well in Bao-zhu-si dam base[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(2): 205-208.
    [9]Xie Lizi. An analysis on the nature of CASE method and on the cause of underestimated pile load capacity by this method[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(1): 49-54.
    [10]Ke Liwen. Study on PDA-CASE Dynamic Test of Pile[J]. Chinese Journal of Geotechnical Engineering, 1991, 13(2): 42-50.
  • Cited by

    Periodical cited type(7)

    1. 张明,魏凯祥,年宾,姜福兴,王昆,朱海虎,胡浩. 深井冲击煤层充填工作面区段煤柱宽度研究. 岩石力学与工程学报. 2025(02): 316-330 .
    2. 贺海鸿,张宁,王冰,王常彬,曹安业. 深部复杂覆岩结构煤层开采冲击地压致灾层位判识研究. 煤炭技术. 2024(05): 56-59 .
    3. 崔峰,张随林,刘旭东,来兴平,姬松涛,冯攀飞,贾冲,陆长亮,王昊. 急倾斜巨厚煤层复杂空间结构区微震时空演化规律及诱冲机理. 煤炭学报. 2024(04): 1786-1803 .
    4. 张广超,尹茂胜,周广磊,陶广哲,张照允,闫宪洋,李振国,吕凯. 厚硬岩层下板结构破断应力-能量场积聚演化规律. 中国矿业大学学报. 2024(04): 647-663 .
    5. 夏永学,张晨阳,杜涛涛,周金龙,孙如达,陆闯,潘俊锋. 磨砂射流轴向切顶压裂工艺研发及应用. 煤炭学报. 2024(S1): 36-44 .
    6. 曹安业,窦林名,白贤栖,刘耀琪,杨科,李家卓,王常彬. 我国煤矿矿震发生机理及治理现状与难题. 煤炭学报. 2023(05): 1894-1918 .
    7. 白贤栖,曹安业,刘耀琪,王常彬,杨旭,赵迎春,杨耀. 基于震源机制解析的巨厚覆岩矿震破裂机制. 煤炭学报. 2023(11): 4024-4035 .

    Other cited types(2)

Catalog

    Article views (193) PDF downloads (55) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return