• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CAO Anye, BAI Xianxi, CAI Wu, WEN Yingyuan, LI Xuwei, MA Xiang, HUANG Rui. Mechanism for stress abnormality and rock burst in variation zone of roof-stratum thickness[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 512-520. DOI: 10.11779/CJGE20211194
Citation: CAO Anye, BAI Xianxi, CAI Wu, WEN Yingyuan, LI Xuwei, MA Xiang, HUANG Rui. Mechanism for stress abnormality and rock burst in variation zone of roof-stratum thickness[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 512-520. DOI: 10.11779/CJGE20211194

Mechanism for stress abnormality and rock burst in variation zone of roof-stratum thickness

More Information
  • Received Date: October 12, 2021
  • Available Online: March 15, 2023
  • The roof stratum structure is one of the main factors affecting coal burst, and the coal burst is also easily induced in the variation zone of roof-stratum thickness. This phenomenon is gradually severe in deep mining areas in Inner Mongolia. The stress distribution in the variation zone of roof-stratum thickness is analyzed based on the theory of elastic mechanics. The FLAC3D numerical modeling is then performed to investigate the influences of the variation of stratum thickness on the stress distribution characteristics and energy evolution in the coal seam. The coal burst mechanism due to the variation of stratum thickness is finally released. The results show that the tectonic stress in the thick roof zone is larger than that in the thin roof zone, and the stress gradient increases with the increasing variation in the stratum thickness or the roof properties. In the variation zone of roof-stratum thickness, the superposition of the advanced abutment pressure and the increasing tectonic stress results in a high-stress concentration area. A higher coal burst risk might thus occur in the roadway near the longwall in the roof variation zone to the thicker roof zone, where more intensive elastic energy is released in the coal/rock mass. The comparative analysis of two field cases shows that more seismic activities occur in the variation zone of stratum thickness and from the variation zone to the thicker stratum zone, and the roadway damage is obvious, which is consistent with the theoretical analysis.
  • [1]
    窦林名, 周坤友, 宋士康, 等. 煤矿冲击矿压机理、监测预警及防控技术研究[J]. 工程地质学报, 2021, 29(4): 917-932. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202104002.htm

    DOU Linming, ZHOU Kunyou, SONG Shikang, et al. Occurrence mechanism, monitoring and prevention technology of rockburst in coal mines[J]. Journal of Engineering Geology, 2021, 29(4): 917-932. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202104002.htm
    [2]
    李东, 姜福兴, 陈洋, 等. 深井富水工作面"动—静"应力效应诱发冲击地压机理研究[J]. 岩土工程学报, 2018, 40(9): 1714-1722. doi: 10.11779/CJGE201809019

    LI Dong, JIANG Fuxing, CHEN Yang, et al. Mechanism of rockburst induced by "dynamic-static" stress effect in water-rich working face of deep well[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1714-1722. (in Chinese) doi: 10.11779/CJGE201809019
    [3]
    GUO W Y, GU Q H, TAN Y L, et al. Case studies of rock bursts in tectonic areas with facies change[J]. Energies, 2019, 12(7): 1330-1341. doi: 10.3390/en12071330
    [4]
    孙振武. 煤层厚度局部变化区域地应力场分布的数值模拟[J]. 矿山压力与顶板管理, 2003, 20(3): 95-97, 100. doi: 10.3969/j.issn.1673-3363.2003.03.037

    SUN Zhenwu. Numerical simulation on stress field distribution in partial transformation area of coal seam height[J]. Ground Pressure and Strata Control, 2003, 20(3): 95-97, 100. (in Chinese) doi: 10.3969/j.issn.1673-3363.2003.03.037
    [5]
    ÁLVAREZ-FERNÁNDEZ M I, GONZÁLEZ-NICIEZA C, ÁLVAREZ-VIGIL A E, et al. Numerical modelling and analysis of the influence of local variation in the thickness of a coal seam on surrounding stresses: application to a practical case[J]. International Journal of Coal Geology, 2009, 79(4): 157-166. https://www.cnki.com.cn/Article/CJFDTOTAL-XMSW202103004.htm
    [6]
    ZHU G G, DOU L M, LI Z L, et al. Mining-induced stress changes and rock burst control in a variable-thickness coal seam[J]. Arabian Journal of Geosciences, 2016, 9(5): 365. doi: 10.1007/s12517-016-2356-3
    [7]
    南存全, 丁维波, 吕进国, 等. 采动影响下煤厚变异区超前支承压力变化规律的数值模拟[J]. 安全与环境学报, 2018, 18(6): 2200-2204. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201806027.htm

    NAN Cunquan, DING Weibo, LÜ Jinguo, et al. Numerical simulation for the changing regularity of the leading support pressure in the coal seam variety region under the mining impact[J]. Journal of Safety and Environment, 2018, 18(6): 2200-2204. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201806027.htm
    [8]
    王勇, 杨毕, 邓川, 等. 煤厚变化对冲击地压影响的数值模拟分析[J]. 煤矿安全, 2017, 48(5): 198-201. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201705055.htm

    WANG Yong, YANG Bi, DENG Chuan, et al. Numerical simulation analysis of influence of coal thickness change on rock burst[J]. Safety in Coal Mines, 2017, 48(5): 198-201. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201705055.htm
    [9]
    赵同彬, 郭伟耀, 谭云亮, 等. 煤厚变异区开采冲击地压发生的力学机制[J]. 煤炭学报, 2016, 41(7): 1659-1666. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201607009.htm

    ZHAO Tongbin, GUO Weiyao, TAN Yunliang, et al. Mechanics mechanism of rock burst caused by mining in the variable region of coal thickness[J]. Journal of China Coal Society, 2016, 41(7): 1659-1666. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201607009.htm
    [10]
    蔡美峰. 岩石力学与工程[M]. 2版. 北京: 科学出版社, 2013.

    CAI Meifeng. Rock Mechanics and Engineering[M]. 2nd ed. Beijing: Science Press, 2013. (in Chinese)
    [11]
    CAO W Z, SHI J Q, DURUCAN S, et al. Gas-driven rapid fracture propagation under unloading conditions in coal and gas outbursts[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 130: 104325. doi: 10.1016/j.ijrmms.2020.104325
    [12]
    许家林, 钱鸣高, 马文顶, 等. 岩层移动模拟研究中加载问题的探讨[J]. 中国矿业大学学报, 2001, 30(3): 252-255. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200103009.htm

    XU Jialin, QIAN Minggao, MA Wending, et al. Discussion on loading problem in physical and numerical simulation of strata movement[J]. Journal of China University of Mining & Technology, 2001, 30(3): 252-255. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200103009.htm
    [13]
    张朝鹏. 不同赋存深度煤岩力学参数差异性及采动力学行为研究[D]. 成都: 四川大学, 2017.

    ZHANG Chaopeng. Differences of Coal Mechanical Parameters and Mining Induced Mechanical Behavior Induced by Different Depths[D]. Chengdu: Sichuan University, 2017. (in Chinese)
    [14]
    王路军, 周宏伟, 荣腾龙, 等. 深部煤体采动应力场演化规律及扰动特征研究[J]. 岩石力学与工程学报, 2019, 38(增刊1): 2944-2954. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S1035.htm

    WANG Lujun, ZHOU Hongwei, RONG Tenglong, et al. Stress field evolution law and disturbance characteristic of coal at depth under mining[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S1): 2944-2954. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S1035.htm
    [15]
    谢和平, 鞠杨, 黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J]. 岩石力学与工程学报, 2005, 24(17): 3003-3010. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200517000.htm

    XIE Heping, JU Yang, LI Liyun. Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3003-3010. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200517000.htm
    [16]
    窦林名, 何江, 曹安业, 等. 煤矿冲击矿压动静载叠加原理及其防治[J]. 煤炭学报, 2015, 40(7): 1469-1476. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201507001.htm

    DOU Linming, HE Jiang, CAO Anye, et al. Rock burst prevention methods based on theory of dynamic and static combined load induced in coal mine[J]. Journal of China Coal Society, 2015, 40(7): 1469-1476. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201507001.htm
    [17]
    CAI W, DOU L M, SI G Y, et al. A new seismic-based strain energy methodology for coal burst forecasting in underground coal mines[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 123: 104086.
    [18]
    苗小虎, 姜福兴, 王存文, 等. 微地震监测揭示的矿震诱发冲击地压机理研究[J]. 岩土工程学报, 2011, 33(6): 971-976. http://cge.nhri.cn/cn/article/id/14040

    MIAO Xiaohu, JIANG Fuxing, WANG Cunwen, et al. Mechanism of microseism-inducd rock burst revealed by microseismic monitoring[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 971-976. (in Chinese) http://cge.nhri.cn/cn/article/id/14040
  • Related Articles

    [1]YING Sai, XIA Xiaozhou, WEN Tao, ZHOU Fengxi, CAO Yapeng, LI Guoyu, ZHANG Qing. Experimental study on freezing characteristic curve of soils based on nuclear magnetic resonance technology[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1437-1444. DOI: 10.11779/CJGE20230301
    [2]TAO Gaoliang, PENG Yinjie, CHEN Yin, XIAO Henglin, LUO Chenchen, ZHONG Chuheng, LEI Da. A new fast prediction method for relative permeability coefficient of unsaturated soils based on NMR[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(3): 470-479. DOI: 10.11779/CJGE20221426
    [3]WANG Enliang, LI Yuang, REN Zhifeng, JIANG Haiqiang, LIU Chengqian, ZOU Yiyun, DU Shilin. Microstructural change of improved dispersive soil based on scanning electron microscope and nuclear magnetic resonance technology[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1123-1132. DOI: 10.11779/CJGE20220331
    [4]LIU Qian-qian, CAI Guo-qing, HAN Bo-wen, QIN Yu-teng, LI Jian. Experimental study on pore structure and freezing characteristics of graded soils based on NMR[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 178-182. DOI: 10.11779/CJGE2022S1032
    [5]TIAN Jia-li, WANG Hui-min, LIU Xing-xing, XIANG Lei, SHENG JIN-chang, LUO Yu-long, ZHAN Mei-li. Permeability characteristics of sandstone based on NMR-coupled real-time seepage[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1671-1678. DOI: 10.11779/CJGE202209012
    [6]MA Dong-dong, MA Qin-yong, HUANG Kun, ZHANG Rong-rong. Pore structure and dynamic mechanical properties of geopolymer cement soil based on nuclear magnetic resonance technique[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 572-578. DOI: 10.11779/CJGE202103021
    [7]WANG Ying, LIU Jin, MA Xiao-fan, QI Chang-qing, LU Hong-ning. Immersion effect of polyurethane-reinforced sand based on NMR[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2342-2349. DOI: 10.11779/CJGE202012023
    [8]CHENG Hua, CHEN Han-qing, CAO Guang-yong, RONG Chuan-Xin, YAO Zhi-shu, CAI Hai-bing. Migration mechanism of capillary-film water in frozen soil and its experimental verification[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1790-1799. DOI: 10.11779/CJGE202010003
    [9]DU Yang, Tang Li-yun, YANG Liu-jun, WANG Xin, BAI Miao-miao. Interface characteristics of frozen soil-structure thawing process based on nuclear magnetic resonance[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2316-2322. DOI: 10.11779/CJGE201912017
    [10]AN Ai-jun, LIAO Jing-yun. Modified mesostructure of Standard Gange Railway expansive soils of Mombasa- Nairobi based on nuclear magnetic resonance and scanning electron microscope[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 152-156. DOI: 10.11779/CJGE2018S2031
  • Cited by

    Periodical cited type(9)

    1. 宋德坤,刘乐乐,王栋. 南海北部天然气水合物赋存区沉积物渗透性敏感规律试验研究. 地学前缘. 2024(06): 405-414 .
    2. 王丹,饶运章,刘戈,石亮,张美道. 离子型稀土镁盐浸矿不同深度矿土孔隙结构演化规律. 稀土. 2023(05): 92-102 .
    3. 李品良,许强,刘佳良,何攀,纪续,陈婉琳,彭大雷. 盐分影响重塑黄土渗透性的微观机制试验研究. 岩土力学. 2023(S1): 504-512 .
    4. 陈瑞敏,简文彬,张小芳,方泽化. CSFG-FR协同作用改良淤泥固化土性能试验研究. 岩土力学. 2022(04): 1020-1030 .
    5. 郭钟群,周可凡,金解放,周尖荣,尚白红. 流体理化特性对土体渗流规律影响研究进展. 有色金属科学与工程. 2022(04): 116-125 .
    6. 安鹏举,鲁莎,唐辉明,孙思璇,张子涵,缪明昊. 渗透作用下滑带细观结构演变特性. 地质科技通报. 2022(06): 169-179 .
    7. 张晓飞,陈新炜,严涛,张文伟,李守义. 基于裂缝冲刷试验的分散性土自愈性研究. 水资源与水工程学报. 2022(06): 167-173+181 .
    8. 陈仁祥,伏慧平,宋勇,王太伟,高柏. 稀土浸矿区山体滑坡特征及成因. 江西建材. 2021(01): 183-185 .
    9. 李文英,杨洋,曹成,许增光. 化学淤堵作用下尾矿砂孔隙分布及渗透特性试验研究. 水资源与水工程学报. 2021(03): 187-192 .

    Other cited types(22)

Catalog

    Article views (193) PDF downloads (54) Cited by(31)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return