Citation: | CAO Anye, BAI Xianxi, CAI Wu, WEN Yingyuan, LI Xuwei, MA Xiang, HUANG Rui. Mechanism for stress abnormality and rock burst in variation zone of roof-stratum thickness[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 512-520. DOI: 10.11779/CJGE20211194 |
[1] |
窦林名, 周坤友, 宋士康, 等. 煤矿冲击矿压机理、监测预警及防控技术研究[J]. 工程地质学报, 2021, 29(4): 917-932. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202104002.htm
DOU Linming, ZHOU Kunyou, SONG Shikang, et al. Occurrence mechanism, monitoring and prevention technology of rockburst in coal mines[J]. Journal of Engineering Geology, 2021, 29(4): 917-932. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202104002.htm
|
[2] |
李东, 姜福兴, 陈洋, 等. 深井富水工作面"动—静"应力效应诱发冲击地压机理研究[J]. 岩土工程学报, 2018, 40(9): 1714-1722. doi: 10.11779/CJGE201809019
LI Dong, JIANG Fuxing, CHEN Yang, et al. Mechanism of rockburst induced by "dynamic-static" stress effect in water-rich working face of deep well[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1714-1722. (in Chinese) doi: 10.11779/CJGE201809019
|
[3] |
GUO W Y, GU Q H, TAN Y L, et al. Case studies of rock bursts in tectonic areas with facies change[J]. Energies, 2019, 12(7): 1330-1341. doi: 10.3390/en12071330
|
[4] |
孙振武. 煤层厚度局部变化区域地应力场分布的数值模拟[J]. 矿山压力与顶板管理, 2003, 20(3): 95-97, 100. doi: 10.3969/j.issn.1673-3363.2003.03.037
SUN Zhenwu. Numerical simulation on stress field distribution in partial transformation area of coal seam height[J]. Ground Pressure and Strata Control, 2003, 20(3): 95-97, 100. (in Chinese) doi: 10.3969/j.issn.1673-3363.2003.03.037
|
[5] |
ÁLVAREZ-FERNÁNDEZ M I, GONZÁLEZ-NICIEZA C, ÁLVAREZ-VIGIL A E, et al. Numerical modelling and analysis of the influence of local variation in the thickness of a coal seam on surrounding stresses: application to a practical case[J]. International Journal of Coal Geology, 2009, 79(4): 157-166. https://www.cnki.com.cn/Article/CJFDTOTAL-XMSW202103004.htm
|
[6] |
ZHU G G, DOU L M, LI Z L, et al. Mining-induced stress changes and rock burst control in a variable-thickness coal seam[J]. Arabian Journal of Geosciences, 2016, 9(5): 365. doi: 10.1007/s12517-016-2356-3
|
[7] |
南存全, 丁维波, 吕进国, 等. 采动影响下煤厚变异区超前支承压力变化规律的数值模拟[J]. 安全与环境学报, 2018, 18(6): 2200-2204. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201806027.htm
NAN Cunquan, DING Weibo, LÜ Jinguo, et al. Numerical simulation for the changing regularity of the leading support pressure in the coal seam variety region under the mining impact[J]. Journal of Safety and Environment, 2018, 18(6): 2200-2204. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201806027.htm
|
[8] |
王勇, 杨毕, 邓川, 等. 煤厚变化对冲击地压影响的数值模拟分析[J]. 煤矿安全, 2017, 48(5): 198-201. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201705055.htm
WANG Yong, YANG Bi, DENG Chuan, et al. Numerical simulation analysis of influence of coal thickness change on rock burst[J]. Safety in Coal Mines, 2017, 48(5): 198-201. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201705055.htm
|
[9] |
赵同彬, 郭伟耀, 谭云亮, 等. 煤厚变异区开采冲击地压发生的力学机制[J]. 煤炭学报, 2016, 41(7): 1659-1666. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201607009.htm
ZHAO Tongbin, GUO Weiyao, TAN Yunliang, et al. Mechanics mechanism of rock burst caused by mining in the variable region of coal thickness[J]. Journal of China Coal Society, 2016, 41(7): 1659-1666. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201607009.htm
|
[10] |
蔡美峰. 岩石力学与工程[M]. 2版. 北京: 科学出版社, 2013.
CAI Meifeng. Rock Mechanics and Engineering[M]. 2nd ed. Beijing: Science Press, 2013. (in Chinese)
|
[11] |
CAO W Z, SHI J Q, DURUCAN S, et al. Gas-driven rapid fracture propagation under unloading conditions in coal and gas outbursts[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 130: 104325. doi: 10.1016/j.ijrmms.2020.104325
|
[12] |
许家林, 钱鸣高, 马文顶, 等. 岩层移动模拟研究中加载问题的探讨[J]. 中国矿业大学学报, 2001, 30(3): 252-255. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200103009.htm
XU Jialin, QIAN Minggao, MA Wending, et al. Discussion on loading problem in physical and numerical simulation of strata movement[J]. Journal of China University of Mining & Technology, 2001, 30(3): 252-255. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200103009.htm
|
[13] |
张朝鹏. 不同赋存深度煤岩力学参数差异性及采动力学行为研究[D]. 成都: 四川大学, 2017.
ZHANG Chaopeng. Differences of Coal Mechanical Parameters and Mining Induced Mechanical Behavior Induced by Different Depths[D]. Chengdu: Sichuan University, 2017. (in Chinese)
|
[14] |
王路军, 周宏伟, 荣腾龙, 等. 深部煤体采动应力场演化规律及扰动特征研究[J]. 岩石力学与工程学报, 2019, 38(增刊1): 2944-2954. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S1035.htm
WANG Lujun, ZHOU Hongwei, RONG Tenglong, et al. Stress field evolution law and disturbance characteristic of coal at depth under mining[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S1): 2944-2954. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S1035.htm
|
[15] |
谢和平, 鞠杨, 黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J]. 岩石力学与工程学报, 2005, 24(17): 3003-3010. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200517000.htm
XIE Heping, JU Yang, LI Liyun. Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3003-3010. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200517000.htm
|
[16] |
窦林名, 何江, 曹安业, 等. 煤矿冲击矿压动静载叠加原理及其防治[J]. 煤炭学报, 2015, 40(7): 1469-1476. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201507001.htm
DOU Linming, HE Jiang, CAO Anye, et al. Rock burst prevention methods based on theory of dynamic and static combined load induced in coal mine[J]. Journal of China Coal Society, 2015, 40(7): 1469-1476. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201507001.htm
|
[17] |
CAI W, DOU L M, SI G Y, et al. A new seismic-based strain energy methodology for coal burst forecasting in underground coal mines[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 123: 104086.
|
[18] |
苗小虎, 姜福兴, 王存文, 等. 微地震监测揭示的矿震诱发冲击地压机理研究[J]. 岩土工程学报, 2011, 33(6): 971-976. http://cge.nhri.cn/cn/article/id/14040
MIAO Xiaohu, JIANG Fuxing, WANG Cunwen, et al. Mechanism of microseism-inducd rock burst revealed by microseismic monitoring[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 971-976. (in Chinese) http://cge.nhri.cn/cn/article/id/14040
|
[1] | YING Sai, XIA Xiaozhou, WEN Tao, ZHOU Fengxi, CAO Yapeng, LI Guoyu, ZHANG Qing. Experimental study on freezing characteristic curve of soils based on nuclear magnetic resonance technology[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1437-1444. DOI: 10.11779/CJGE20230301 |
[2] | TAO Gaoliang, PENG Yinjie, CHEN Yin, XIAO Henglin, LUO Chenchen, ZHONG Chuheng, LEI Da. A new fast prediction method for relative permeability coefficient of unsaturated soils based on NMR[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(3): 470-479. DOI: 10.11779/CJGE20221426 |
[3] | WANG Enliang, LI Yuang, REN Zhifeng, JIANG Haiqiang, LIU Chengqian, ZOU Yiyun, DU Shilin. Microstructural change of improved dispersive soil based on scanning electron microscope and nuclear magnetic resonance technology[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1123-1132. DOI: 10.11779/CJGE20220331 |
[4] | LIU Qian-qian, CAI Guo-qing, HAN Bo-wen, QIN Yu-teng, LI Jian. Experimental study on pore structure and freezing characteristics of graded soils based on NMR[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 178-182. DOI: 10.11779/CJGE2022S1032 |
[5] | TIAN Jia-li, WANG Hui-min, LIU Xing-xing, XIANG Lei, SHENG JIN-chang, LUO Yu-long, ZHAN Mei-li. Permeability characteristics of sandstone based on NMR-coupled real-time seepage[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1671-1678. DOI: 10.11779/CJGE202209012 |
[6] | MA Dong-dong, MA Qin-yong, HUANG Kun, ZHANG Rong-rong. Pore structure and dynamic mechanical properties of geopolymer cement soil based on nuclear magnetic resonance technique[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 572-578. DOI: 10.11779/CJGE202103021 |
[7] | WANG Ying, LIU Jin, MA Xiao-fan, QI Chang-qing, LU Hong-ning. Immersion effect of polyurethane-reinforced sand based on NMR[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2342-2349. DOI: 10.11779/CJGE202012023 |
[8] | CHENG Hua, CHEN Han-qing, CAO Guang-yong, RONG Chuan-Xin, YAO Zhi-shu, CAI Hai-bing. Migration mechanism of capillary-film water in frozen soil and its experimental verification[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1790-1799. DOI: 10.11779/CJGE202010003 |
[9] | DU Yang, Tang Li-yun, YANG Liu-jun, WANG Xin, BAI Miao-miao. Interface characteristics of frozen soil-structure thawing process based on nuclear magnetic resonance[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2316-2322. DOI: 10.11779/CJGE201912017 |
[10] | AN Ai-jun, LIAO Jing-yun. Modified mesostructure of Standard Gange Railway expansive soils of Mombasa- Nairobi based on nuclear magnetic resonance and scanning electron microscope[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 152-156. DOI: 10.11779/CJGE2018S2031 |