• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
MA Yan, WANG Jia-ding, PENG Shu-jun, LI Yong-wei, WANG Jun-hai, CHEN Wei. Immersion tests on characteristics of deformation of self-weight collapsible loess under overburden pressure[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 537-546. DOI: 10.11779/CJGE201403017
Citation: MA Yan, WANG Jia-ding, PENG Shu-jun, LI Yong-wei, WANG Jun-hai, CHEN Wei. Immersion tests on characteristics of deformation of self-weight collapsible loess under overburden pressure[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 537-546. DOI: 10.11779/CJGE201403017

Immersion tests on characteristics of deformation of self-weight collapsible loess under overburden pressure

More Information
  • Received Date: May 05, 2013
  • Published Date: March 19, 2014
  • The immersion tests on a self-weight collapse loess site are conducted by setting water injection holes in Jinzhong City of Shanxi Province, China. A method for measuring the horizontal displacement of underground loess outside the test pit is proposed. The collapsible deformation of ground surface and underground, the influence region of loess collapse, the development process of fissures around the test pit and the underground lateral deformation are monitored and studied. The computing method of area correction factor is discussed. The results indicate that the curve of the collapsible process includes 6 stages. The influence region of the loess collapse relates to the thickness of the self-weight collapsible loess, and their ratio is about 1.6, which is obtained from the results of 4 immersion tests in 4 provinces. A new computing method based on the weighted average of the area that stands for different collapse volumes is established, and then the area correction factor is calculated as 0.7, which is greater than the value given by the Chinese Code. The development process of the fissures around the test pit experiences 4 steps, and the thickness of the self-weight collapsible loess determined by the immersion tests is 18 m, which is less than the value got from the indoor soil tests. The shallow loess outside the test pit moves inside while the deep loess moves outside, and the depth of inflection point decreases when the distance between the monitoring line and the test pit increases. All the results have been applied to the design of foundation treatment in later construction projects in this site, and they can also guide other projects in nearby regions.
  • [1]
    陈正汉, 许镇鸿, 刘祖典. 关于黄土湿陷的若干问题[J].土木工程学报, 1986, 19(3): 62-69. (CHEN Zheng-han, XU Zheng-hong, LIU Zu-dian. Some problems of collapsed loess[J]. Chinese Journal of Civil Engineering, 1986, 19(3): 62-69. (in Chinese))
    [2]
    陈正汉, 刘祖典. 黄土的湿陷变形机理[J]. 岩土工程学报, 1986, 8(2): 1 - 12. (CHEN Zheng-han, LIU Zu-dian. Mechanism of collapse deformation of loess[J]. Chinese Journal of Geotechnical Engineering, 1986, 8(2): 1-12. (in Chinese)).
    [3]
    杨运来. 黄士湿陷机理的研究[J]. 中国科学, 1988(7): 756-765. (YANG Yun-lai. Research on collapsibility mechanism of loess[J]. Scientia Sinica, 1988(7): 756-765. (in Chinese))
    [4]
    高国瑞.黄土湿陷变形的结构理论[J]. 岩土工程学报, 1990, 12(4): 1-10. (GAO Guo-rui. A structure theory for collapsing deformation of loess soils[J]. Chinese Journal of Geotechnical Engineering, 1990, 12(4): 1-10. (in Chinese))
    [5]
    王家鼎, 张倬元. 黄土自重湿陷变形的脉动液化机理[J].地理科学, 1999, 19(3): 271-276. (GWANG Jia-ding, ZHANG Zhuo-yuan. A mechanism in loess self-load collapse[J]. Scientia Geographica Sinica, 1999, 19(3): 271-276. (in Chinese))
    [6]
    雷祥义. 中国黄土的孔隙类型与湿陷性[J]. 中国科学(B辑), 1987(12): 1309-1315. (LEI Xiang-yi. Pore type and collapsibility of loess in China[J]. Science in China(Series B), 1987(12): 1309-1315. (in Chinese))
    [7]
    苗天德, 刘忠玉, 任九生. 湿陷性黄土的变形机理与本构关系[J]. 岩土工程学报, 1999, 21(4): 383-387. (MIAO Tian-de, LIU Zhong-yu, REN Jiu-sheng. Deformation mechanism and constitutive relation of collapsed loess[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(4): 383-387. (in Chinese))
    [8]
    廖盛修. 湿陷性黄土地基预浸水[J]. 有色冶金建筑, 1983(2): 1-13. (LIAO Sheng-xiu. Study on presoaking of collapsible loess[J]. Nonferrous Metallurgy Construction, 1983(2): 1-13. (in Chinese))
    [9]
    钱鸿缙, 朱 梅, 谢 爽. 河津黄土地基湿陷变形试验研究[J]. 岩土工程学报, 1992, 14(6): 1-9. (QIAN Hong-jing, ZHU Mei, XIE Shuang. Experimental study on the regularities of collapsible deformation of loess foundation in Hejin, Shanxi[J]. Chinese Journal of Geotechnical Engineering, 1992, 14(6): 1-9. (in Chinese))
    [10]
    李大展, 何颐华, 隋国秀. Q2黄土大面积浸水试验研究[J]. 岩土工程学报, 1993, 15(2): 1-11. (LI Da-zhan, HE Yi-hua, SUI Guo-xiu. Study and test on immersion of Q2 loess in arge area[J]. Chinese Journal of Geotechnical Engineering, 1993, 15(2): 1-11. (in Chinese))
    [11]
    黄雪峰, 陈正汉, 哈 双, 等. 大厚度自重湿陷性黄土场地湿陷变形特征的大型现场浸水试验研究[J]. 岩土工程学报, 2006, 28(3): 382-389. (HUANG Xue-feng, CHEN Zheng-han, HA Shuang, et al. Large area field immersion test n characteristics of deformation of self weight collapse loess nder overburden pressure[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 382-389. (in Chinese))
    [12]
    刘保健, 谢永利, 于友成. 黄土非饱和入渗规律原位试验研究[J]. 岩石力学与工程学报, 2004, 23(24): 4156-4160. (LIU Bao-jian, XIE Yong-li, YU You-cheng. In-situ testing study on infiltration in unsaturated loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(24): 4156-4160. (in Chinese))
    [13]
    王小军, 米维军, 熊治文, 等. 郑西客运专线黄土地基湿陷性现场浸水试验研究[J]. 铁道学报, 2012(1): 83-90. (WANG Xiao-jun, MI Wei-jun, XIONG Zhi-wen, et al. Water immersion fild test of collapsibility of loess foundation of Zhengzhou-Xi'an passenger dedicated line[J]. Journal of the China Railway Society, 2012(1): 83-90. (in Chinese))
    [14]
    姚志华, 黄雪峰, 陈正汉, 等. 兰州地区大厚度自重湿陷性黄土场地浸水试验综合观测研究[J]. 岩土工程学报, 2012(1): 65-74. (YAO Zhi-hua, HUANG Xue-feng, CHEN Zheng-han, et al. Comprehensive soaking tests on self-weight collapse loess with heavy section in Lanzhou region[J]. Chinese Journal of Geotechnical Engineering, 2012(1): 65-74. (in Chinese))
    [15]
    武小鹏, 熊治文, 王小军, 等. 郑西高速铁路豫西段黄土现场浸水自重湿陷特征研究[J]. 岩土力学, 2012(6): 1769-1773. (WU Xiao-peng, XIONG Zhi-wen, WANG Xiao-jun, et al. Study of immersion collapsible characteristics under overburden pressureof Western Henan loess along Zhengzhou-Xi'an high-speed railway[J]. Rock and Soil Mechanics, 2012(6): 83-90. (in Chinese))
    [16]
    马侃彦, 张继文, 刘争宏, 等. 自重湿陷性黄土场地的试坑浸水试验[J]. 勘察科学技术, 2012(6): 1769-1773. (MA Kan-yan, ZHANG Ji-wen, LIU Zheng-hong, et al. Immersion test of test pit at self weight collapsible loess site[J]. Site Investigation Science and Technology, 2012(6): 1769-1773. (in Chinese))
  • Related Articles

    [1]Time-dependent analysis of deformation induced by soft soil pit excavation adjacent to small curvature radius tunnels[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240469
    [2]HUANG Maosong, LI Hao, YU Jian, ZHANG Chenrong, NI Yuping. Approach for evaluating longitudinal deformation of underlying tunnels due to excavation of upper foundation pit[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(11): 2209-2216. DOI: 10.11779/CJGE20220780
    [3]XU Si-fa, ZHOU Qi-hui, ZHENG Wen-hao, ZHU Yong-qiang, WANG Zhe. Influences of construction of foundation pits on deformation of adjacent operating tunnels in whole process based on monitoring data[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 804-812. DOI: 10.11779/CJGE202105003
    [4]HUANG Xiao-hu, YI Wu, GONG Chao, HUANG Hai-feng, YU Qing. Reactivation and deformation mechanism of ancient landslides by excavation[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1276-1285. DOI: 10.11779/CJGE202007011
    [5]XU Zhong-hua, ZONG Lu-dan, SHEN Jian, WANG Wei-dong. Deformation of a deep excavation adjacent to metro tunnels in soft soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 41-44. DOI: 10.11779/CJGE2019S1011
    [6]WEI Gang, HONG Wen-qiang, WEI Xin-jiang, ZHANG Xin-hai, LUO Jing-wei. Calculation of rigid body rotation and shearing dislocation deformation of adjacent shield tunnels due to excavation of foundation pits[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1251-1259. DOI: 10.11779/CJGE201907009
    [7]ZHENG Gang, DU Yi-ming, DIAO Yu, DENG Xu, ZHU Gan-ping, ZHANG Li-ming. Influenced zones for deformation of existing tunnels adjacent to excavations[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 599-612. DOI: 10.11779/CJGE201604003
    [8]ZHA Fu-sheng, LIN Zhi-yue, CUI Ke-rui. Numerical analysis of stress and deformation characteristics of foundation pits under deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 484-488.
    [9]CAO Quan, LI Qin-ming, XIANG Wei, JIA Hai-liang. Automatic monitoring of effects of excavation of group foundation pitson existing adjacent metro tunnels[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 552-556.
    [10]Liu Xingwang, Shi Zuyuan, Yi Deqing, Wu Shiming. Deformation characteristics analysis of braced excavation on soft clay[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(4): 456-460.
  • Cited by

    Periodical cited type(9)

    1. 宋泽宇,蒲力,马云飞. 含有机质黏土全吸力范围内土-水特征曲线试验研究. 水力发电. 2024(10): 114-118 .
    2. 童富果,蔡文婧,薛松,刘刚,李东奇. 基于孔隙分形特征的水泥基毛细吸力预测模型. 水利水电科技进展. 2024(06): 27-33 .
    3. 幸锦雯,孙文,余光耀,徐娜,麻建宏. 基于核磁共振及分形理论预测非饱和土石混合体SWCC. 水利水电技术(中英文). 2023(10): 180-189 .
    4. 王海曼,倪万魁. 不同干密度压实黄土的饱和/非饱和渗透系数预测模型. 岩土力学. 2022(03): 729-736 .
    5. 魏小棋,陈盼. 压实延安黄土土-水特性及快速测定方法探讨. 土工基础. 2022(03): 446-450 .
    6. 王海曼,倪万魁,刘魁. 延安压实黄土土-水特征曲线的快速预测方法. 岩土力学. 2022(07): 1845-1853 .
    7. 刘莉,姜大伟,于明波,颜荣涛,于海浩,陈波. 千枚岩全风化土的持水特性研究. 河南科技大学学报(自然科学版). 2022(06): 53-58+8 .
    8. 高世壮,薛善彬,张鹏,李春云,王俊洁. 高温作用对应变硬化水泥基复合材料吸水性能及微结构演化特征的影响. 复合材料学报. 2022(10): 4778-4787 .
    9. 马冬冬,马芹永,黄坤,张蓉蓉. 基于NMR的地聚合物水泥土孔隙结构与动态力学特性研究. 岩土工程学报. 2021(03): 572-578 . 本站查看

    Other cited types(13)

Catalog

    Article views (418) PDF downloads (342) Cited by(22)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return