• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
SHAO Sheng-jun, LI Jun, SHAO Jiang, HUANG Shuang-lin, WANG Yong-xin, CHEN Fei. In-situ sand well immersion tests on self-weight collapsible loess site with large depth[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(9): 1549-1558. DOI: 10.11779/CJGE201609001
Citation: SHAO Sheng-jun, LI Jun, SHAO Jiang, HUANG Shuang-lin, WANG Yong-xin, CHEN Fei. In-situ sand well immersion tests on self-weight collapsible loess site with large depth[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(9): 1549-1558. DOI: 10.11779/CJGE201609001

In-situ sand well immersion tests on self-weight collapsible loess site with large depth

More Information
  • Received Date: August 28, 2015
  • Published Date: September 24, 2016
  • The evaluation of collapse deformation laboratory tests on the loess with heavy section is not accurate ingeneral. The in-situ comprehensive soaking tests are time-consuming and costly, and they cannot meet the requirements for linear engineering. Therefore, a new in-situ test method, namely sand well immersion test, is proposed to overcome the shortcomings mentioned above. Its core is the utilization of the relative differential settlement and ground fissures generated between collapsible soil and non-collapsible soil. The water can directly flow into the loess with a certain depth and the soil mass surrounding the sand well by setting up sand well on collapsible loess ground, so that the collapsibility deformations of loess under the bottom of sand well and in the range within the depth of sand well are determined. The method is characterized by easy operation, low cost, short cycle and high flexibility. Based on Baoji-Lanzhou passenger lines, four sand well immersion tests with different depths are performed on a representative self-weight collapsible loess site with large depth. The settlement deformations of sand well site and collapsible soil layers under the bottom of sand wells are measured, through the measurement results of moisture content measurement of soil layers under the bottom of sand drain to analyze the collapsible deformation characteristics of loess layers under the bottom of sand wells are analyzed. With reference to the correction factor of collapse settlement under overburden pressure in this region suggested by the existing specifications, the sand well immersion and the corresponding laboratory compression test results are comparatively analyzed so as to preliminarily demonstrate the rationalitily of the proposed sand drain immersion test method and its advantages in linear engineering on self-weight collapsible loess site with large depth.
  • [1]
    黄雪峰, 陈正汉, 哈 双, 等. 大厚度自重湿陷性黄土场地湿陷变性特征的大型现场浸水试验研究[J]. 岩土工程学报, 2006, 28(3): 382-389. (HUANG Xue-feng, CHEN Zheng-han, HA Shuang, et al. Large area field immersion tests on characteristics of deformation of self weight collapse loess under overburden pressure[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 382-389. (in Chinese))
    [2]
    王小军, 米维军, 熊治文, 等. 郑西客运专线黄土地基湿陷性现场浸水试验研究[J]. 铁道学报, 2012, 34(4): 83-90. (WANG Xiao-jun, MI Wei-jun, XIONG Zhi-wen, et al. Water immersion field tests of collapsibility of loess foundation of Zhengzhou-Xi'an passenger dedicated line[J]. Journal of the China Railway Society, 2012, 34(4): 83-90. (in Chinese))
    [3]
    马 闫, 王家鼎, 彭淑君, 等. 大厚度黄土自重湿陷性场地浸水湿陷变性特征研究[J]. 岩土工程学报, 2014, 36(3): 537-546. (MA Yan, WANG Jia-ding, PENG Shu-jun, et al. Immersion tests on characteristics of deformation of self-weight collapsible loess under overburden pressure[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 537-546. (in Chinese))
    [4]
    GB50025—2004湿陷性黄土地区建筑规范[S]. 2004. (GB50025—2004 Code for building construction in collapsible loess regions[S]. 2004. (in Chinese))
    [5]
    邵生俊, 李 骏, 李国良, 等. 大厚度自重湿陷黄土湿陷变形评价方法的研究[J]. 岩土工程学报, 2015, 37(6): 965-978. (SHAO Sheng-jun, LI Jun, LI Guo-liang, et al. Evaluation method for self-weight collapsible deformation of large thickness loess foundation[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 965-978. (in Chinese))
    [6]
    黄雪峰, 杨校辉. 湿陷性黄土现场进水试验研究进展[J].岩土力学, 2013, 34(2): 222-228. (HUANG Xue-feng, YANG Xiao-hui. A study progress on in-situ soaking test on collapsible loess[J]. Rock and Soil Mechanics, 2013, 34(2): 222-228. (in Chinese))
    [7]
    姚志华, 黄雪峰, 陈正汉, 等. 兰州地区大厚度自重湿陷性黄土场地浸水试验综合观测研究[J]. 岩土工程学报, 2012, 34(1): 65-74. (YAO Zhi-hua, HUANG Xue-feng, CHEN Zheng-han, et al. Comprehensive soaking tests on self-weight collapse loess with heavy section in Lanzhou region[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 65-74. (in Chinese))
    [8]
    邵生俊, 杨春鸣, 焦阳阳, 等. 湿陷性黄土隧道的工程性质分析[J].岩土工程学报, 2013, 35(9): 1580-1590. (SHAO Sheng-jun, YANG Chun-ming, JIAO Yang-yang, et al. Engineering properties of collapsible loess tunnel[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1580-1590. (in Chinese))
    [9]
    邵生俊, 李 骏, 李国良, 等. 黄土湿陷性变形的砂土浸水测试方法[P]. 中国专利:ZL 2012 1 0425416.9,2014-10-01. (SHAO Sheng-jun, LI Jun, LI Guo-liang, et al. Sand well immersion test method for collapsible deformation of loess[P]. Chinese patent: ZL 2012 1 0425416.9,2014-10-01. (in Chinese))
    [10]
    刘明振. 湿陷性黄土间歇浸水试验[J]. 岩土工程学报, 1985, 7(1): 47-54. (LIU Ming-zhen. Collapsible loess intermittent water immersion test[J]. Chinese Journal of Geotechnical Engineering, 1985, 7(1): 47-54. (in Chinese))
    [11]
    机械工业勘察设计研究院. 西安市地铁五号线月登阁试坑浸水试验报告[R]. 西安: 机械工业勘察设计研究院, 2014. (China Jikan Institute of Engineering Investigations and Design. Report on soaking test of Yue Deng Ge site in Xi'an Metro Line 5[R]. Xi'an: China Jikan Institute of Engineering Investigations and Design, 2014. (in Chinese))
    [12]
    西安市地下铁道有限责任公司. 西安地铁工程穿越湿陷性黄土工程特性及应对措施研究成果报告[R]. 西安: 西安市地下铁道有限责任公司, 2013. (Xi'an Subway Limited Liability Company. Research results report on Xi'an subway engineering through the collapsible loess engineering characteristics and countermeasures[R]. Xi'an: Xi'an Subway Limited Liability Company, 2013. (in Chinese))
  • Related Articles

    [1]Time-dependent analysis of deformation induced by soft soil pit excavation adjacent to small curvature radius tunnels[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240469
    [2]HUANG Maosong, LI Hao, YU Jian, ZHANG Chenrong, NI Yuping. Approach for evaluating longitudinal deformation of underlying tunnels due to excavation of upper foundation pit[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(11): 2209-2216. DOI: 10.11779/CJGE20220780
    [3]XU Si-fa, ZHOU Qi-hui, ZHENG Wen-hao, ZHU Yong-qiang, WANG Zhe. Influences of construction of foundation pits on deformation of adjacent operating tunnels in whole process based on monitoring data[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 804-812. DOI: 10.11779/CJGE202105003
    [4]HUANG Xiao-hu, YI Wu, GONG Chao, HUANG Hai-feng, YU Qing. Reactivation and deformation mechanism of ancient landslides by excavation[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1276-1285. DOI: 10.11779/CJGE202007011
    [5]XU Zhong-hua, ZONG Lu-dan, SHEN Jian, WANG Wei-dong. Deformation of a deep excavation adjacent to metro tunnels in soft soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 41-44. DOI: 10.11779/CJGE2019S1011
    [6]WEI Gang, HONG Wen-qiang, WEI Xin-jiang, ZHANG Xin-hai, LUO Jing-wei. Calculation of rigid body rotation and shearing dislocation deformation of adjacent shield tunnels due to excavation of foundation pits[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1251-1259. DOI: 10.11779/CJGE201907009
    [7]ZHENG Gang, DU Yi-ming, DIAO Yu, DENG Xu, ZHU Gan-ping, ZHANG Li-ming. Influenced zones for deformation of existing tunnels adjacent to excavations[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 599-612. DOI: 10.11779/CJGE201604003
    [8]ZHA Fu-sheng, LIN Zhi-yue, CUI Ke-rui. Numerical analysis of stress and deformation characteristics of foundation pits under deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 484-488.
    [9]CAO Quan, LI Qin-ming, XIANG Wei, JIA Hai-liang. Automatic monitoring of effects of excavation of group foundation pitson existing adjacent metro tunnels[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 552-556.
    [10]Liu Xingwang, Shi Zuyuan, Yi Deqing, Wu Shiming. Deformation characteristics analysis of braced excavation on soft clay[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(4): 456-460.
  • Cited by

    Periodical cited type(9)

    1. 宋泽宇,蒲力,马云飞. 含有机质黏土全吸力范围内土-水特征曲线试验研究. 水力发电. 2024(10): 114-118 .
    2. 童富果,蔡文婧,薛松,刘刚,李东奇. 基于孔隙分形特征的水泥基毛细吸力预测模型. 水利水电科技进展. 2024(06): 27-33 .
    3. 幸锦雯,孙文,余光耀,徐娜,麻建宏. 基于核磁共振及分形理论预测非饱和土石混合体SWCC. 水利水电技术(中英文). 2023(10): 180-189 .
    4. 王海曼,倪万魁. 不同干密度压实黄土的饱和/非饱和渗透系数预测模型. 岩土力学. 2022(03): 729-736 .
    5. 魏小棋,陈盼. 压实延安黄土土-水特性及快速测定方法探讨. 土工基础. 2022(03): 446-450 .
    6. 王海曼,倪万魁,刘魁. 延安压实黄土土-水特征曲线的快速预测方法. 岩土力学. 2022(07): 1845-1853 .
    7. 刘莉,姜大伟,于明波,颜荣涛,于海浩,陈波. 千枚岩全风化土的持水特性研究. 河南科技大学学报(自然科学版). 2022(06): 53-58+8 .
    8. 高世壮,薛善彬,张鹏,李春云,王俊洁. 高温作用对应变硬化水泥基复合材料吸水性能及微结构演化特征的影响. 复合材料学报. 2022(10): 4778-4787 .
    9. 马冬冬,马芹永,黄坤,张蓉蓉. 基于NMR的地聚合物水泥土孔隙结构与动态力学特性研究. 岩土工程学报. 2021(03): 572-578 . 本站查看

    Other cited types(13)

Catalog

    Article views (460) PDF downloads (604) Cited by(22)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return