• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHU Yan-peng, YANG Kui-bin, WANG Hai-ming, YANG Xiao-hui. Preliminary exploration of tests on effect of micro-immersion on negative skin friction of pile foundation[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 1-7. DOI: 10.11779/CJGE2018S1001
Citation: ZHU Yan-peng, YANG Kui-bin, WANG Hai-ming, YANG Xiao-hui. Preliminary exploration of tests on effect of micro-immersion on negative skin friction of pile foundation[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 1-7. DOI: 10.11779/CJGE2018S1001

Preliminary exploration of tests on effect of micro-immersion on negative skin friction of pile foundation

More Information
  • Received Date: June 10, 2017
  • Published Date: August 24, 2018
  • In order to solve the problem of negative skin friction of pile foundation in collapsible loess areas, a new idea is proposed to improve the bearing capacity of pile foundation by immersion of the soil around the pile to eliminate part of the loess collapsibility in the process of pile foundation construction. Taking it as a starting point, the concept of micro-immersion is introduced, and the field tests are designed. A preliminary exploration is made on the distribution characteristics and development laws of negative skin friction of pile side under different geological conditions and the degree of micro-immersion. The results show that the high technology of pressure circulation grouting forming pile can achieve micro-immersion of soil around the pile to make it pre-collapse at first, and it can enhance the moisture content of soil significantly within the scope of certain depth below leakage layer and form strong immersion sections, and then it may lead to re-collapsibility and cause negative friction. The discontinuous distribution of the leakage slurry layer in the soil layer results in discontinuous collapsibility of the soil around the pile after the pile is loaded, and the negative skin friction of the pile side shows a staggered distribution along its length. With the gradual increase of the degree of micro-immersion, the positive friction resistance of the pile side is gradually weakened, and the ultimate bearing capacity of the single pile decreases gradually. At the same time, the negative skin friction of the pile side increases gradually, but the increase is small and the value is small. Finally, the shortcomings of this experiment are pointed out and the future research is prospected.
  • [1]
    刘祖典. 黄土力学与工程[M]. 陕西: 科学技术出版社, 1997.
    (LIU Zu-dian.Mechanics and engineering of loess[M]. Shaanxi Science and Technology Press, 1997. (in Chinese))
    [2]
    谢定义. 黄土力学特性与应用研究的过去、现在与未来[J]. 地下空间, 1999, 19(4): 273-284.
    (XIE Ding-yi.The past, present and future of the research on mechanical characteristics and application of loess[J]. Underground Space, 1999, 19(4): 273-284. (in Chinese))
    [3]
    杨运来. 黄土湿陷机理的研究[J]. 中国科学(B辑), 1988, 39(7): 754-766.
    (YANG Yun-lai.Study on collapse mechanism of loess[J]. Science in China(Series B), 1988, 39(7): 754-766. (in Chinese))
    [4]
    黄雪峰. 大厚度自重湿陷性黄土的湿陷变形特征、地基处理方法和桩基承载性状研究[D]. 重庆: 后勤工程学院, 2007.
    (HUANG Xue-feng.Research on Collapsible deformation deformation, foundation treatment method and pile bearing behavior of dead-weight collapse loess with heavy section[D]. Chongqing: Logistical Engineering University of PLA, 2007. (in Chinese))
    [5]
    何颐华, 闵连太. 湿陷性黄土地基桩的负摩擦力问题[J]. 建筑结构学报, 1982, 15(2): 1-11.
    (HE Yi-hua, MIN Lian-tai.Problems on negative friction of pile foundation in collapsible loess region[J]. Journal of Building Structures, 1982, 15(2): 1-11. (in Chinese))
    [6]
    赵锡宏, 张启辉, 张保良. 承受负摩擦力的桩基沉降计算的迭代法[J]. 岩土力学, 1999, 20(2): 17-21.
    (ZHAO Xi-hong, ZHANG Qi-hui, ZHANG Bao-liang.Iterative method for calculating the settlement of pile[J]. Rock and Soil Mechanics, 1999, 20(2): 17-21. (in Chinese))
    [7]
    康景文, 毛坚强, 许建, 等. 填土场地桩基负侧摩阻力设计计算方法试验研究[J]. 岩土力学, 2014, 35(增刊2): 25-29.
    (KANG Jing-wen, MAO Jian-qiang, XU Jian, et al.Experiment study of calculation method for pile negative side friction in fill site[J]. Rock and Soil Mechanics, 2014, 35(S2): 25-29. (in Chinese))
    [8]
    魏进, 李哲, 郝忙利, 等自重湿陷性黄土场地的桩基浸水载荷试验[J]. 长安大学学报, 2011, 31(5): 63-67.
    (WEI Jin, LI Zhe, HAO Mang-li, et al.Submerged static load test of pile foundation in collapsible loess area[J]. Journal of Chang’an University, 2011, 31(5): 63-67. (in Chinese))
    [9]
    齐静静, 徐日庆, 龚维明. 湿陷性黄土地区桩侧负摩阻力问题的试验研究[J]. 岩土力学, 2006, 27(增刊): 881-884.
    (QI Jing-jing, XU Ri-qing, GONG Wei-ming.Experimental study on negative skin friction resistance on piles in collapsible loess area[J]. Rock and Soil Mechanics, 2006, 27(S0): 881-884. (in Chinese))
    [10]
    朱彦鹏, 杨校辉, 马天忠, 等. 黄土塬地区大直径长桩承载性状与优化设计研究[J]. 岩石力学与工程学报, 2017, 36(4): 1012-1023.
    (ZHU Yan-peng, YANG Xiao-hui, MA Tian-zhong, et al.Study on bearing behaviors and optimization design of large-diameter long pile foundation in loess subsoil[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(4): 1012-1023. (in Chinese))
    [11]
    刘飞, 郑建国. 湿陷性黄土场地PHC桩浸水试验研究[J]. 岩石力学与工程学报, 2011, 33(增刊2): 362-366.
    (LIU Fei, ZHENG Jian-guo.Immersion tests on PHC piles in collapsible loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 33(S2): 362-366. (in Chinese))
    [12]
    黄雪峰, 杨校辉, 殷鹤, 等. 湿陷性黄土场地湿陷下限深度与桩基中性点位置关系研究[J]. 岩土力学, 2015, 36(增刊2): 296-302.
    (HAUNG Xue-feng, YANG Xiao-hui, YIN He, et al.Study of relationship between maximum collapsing depth and neutral point position of pile foundation in collapsible loess ground[J]. Rock and Soil Mechanics, 2015, 36(S2): 296-302. (in Chinese))
    [13]
    朱彦鹏, 赵天时, 陈长流. 桩基负摩阻力沿桩长变化的试验研究[J]. 岩土力学, 2013, 34(增刊1): 265-272.
    (ZHU Yan-peng, ZHAO Tian-shi, CHEN Chang-liu.Field tests on changes of pile negative friction along its length[J]. Rock and Soil Mechanics, 2013, 34(S1): 265-272. (in Chinese))
    [14]
    郑建国, 邓国华, 刘争宏, 等. 黄土湿陷性分布不连续对湿陷变形的影响研究[J]. 岩土工程学报, 2015, 37(1): 165-170.
    (ZHENG Jian-guo, DENG Guo-hua, LIU Zheng-hong, et al.Influence of discontinuous distribution of collapsible loess on its deformation[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 165-170. (in Chinese))
    [15]
    JGJ106—2014建筑桩基检测技术规范[S]. 北京: 中国建筑工业出版社, 2014. (JGJ106—2014 Technical code for testing of building foundation piles[S]. Beijing: China Architecture and Building Press, 2014. (in Chinese))
  • Related Articles

    [1]LIANG Xiaomin, GU Xiaoqiang, ZHAI Chongpu, WEI Deheng. Anisotropic wave velocities of granular materials and microscopic fabric using X-ray computed tomography[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1398-1407. DOI: 10.11779/CJGE20230425
    [2]ZHANG He-nian, CHEN Liang, LI Xiong-wei, XI Pei-sheng, MU Lin, HU Cai-yun. Ratio and mechanism of activated magnesium oxide carbonized raw earth block materials[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 233-236. DOI: 10.11779/CJGE2021S2055
    [3]YAO Jun-kai, YE Yang-sheng, WANG Peng-cheng, CHEN Feng, CAI De-gou. Subgrade heave of sulfate attacking on cement-stabilized filler[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 782-788. DOI: 10.11779/CJGE201904024
    [4]XU Xiao-li, GAO Feng, ZHANG Zhi-zhen, ZHANG Chuan-hu. Energy and structural effects of granite after high temperature[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 961-968. DOI: 10.11779/CJGE201405022
    [5]ZHOU Qiao-yong, XIONG Bao-lin, YANG Guang-qing, LIU Wei-chao. Microstructure of low liquid limit silt[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 439-444.
    [6]YU Hui, DING Xuan-ming, KONG Gang-qiang, ZHENG Chang-jie. Comparative FEM analysis of deformation properties of expressway widening projects with cast-in-situ X-shaped concrete piles and circular pile[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 170-176.
    [7]WANG Cheng-hu, WANG Hong-cai, LIU Li-peng, SUN Dong-sheng, ZHAO Wei-hua. Effects of high temperatures on mechanical performance of basaltic tuff and mechanism analysis[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1827-1835.
    [8]Micro-experiments on a soft ground improved by cement-mixed soils with gypsum additive[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(8).
    [9]Full scale model tests on vertical bearing characteristics of cast-in-place X-section piles[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6).
    [10]WU Yanqing, CAO Guangzhu, DING Weihua. Permeability experiment of sandstone under variable seepage pressures by using X-ray CT real-time observation[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 780-785.
  • Cited by

    Periodical cited type(4)

    1. 王大兵,黄郁东,韩振中,徐考,崔文海,周苏华. 基于贝叶斯逻辑回归模型的边坡稳定性预测. 市政技术. 2023(10): 173-180 .
    2. 曾锃,赵树祥,葛龙进,潘卫平,李敏,殷国峰. 罗闸河二级水电站拱坝右岸边坡变形破坏机制研究及治理后评估. 岩土工程学报. 2021(S1): 171-175 . 本站查看
    3. 夏增选,李萍,曹博,李同录,沈伟,康海伟. 边坡可靠度的Bayes估计及后验稳健性. 河海大学学报(自然科学版). 2020(03): 238-244 .
    4. 谢永利,刘新荣,晏长根,杨忠平,李家春,周志军,岳夏冰. 特殊岩土体工程边坡研究进展. 土木工程学报. 2020(09): 93-105 .

    Other cited types(18)

Catalog

    Article views (232) PDF downloads (161) Cited by(22)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return