• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
XU Xiao-li, GAO Feng, ZHANG Zhi-zhen, ZHANG Chuan-hu. Energy and structural effects of granite after high temperature[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 961-968. DOI: 10.11779/CJGE201405022
Citation: XU Xiao-li, GAO Feng, ZHANG Zhi-zhen, ZHANG Chuan-hu. Energy and structural effects of granite after high temperature[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 961-968. DOI: 10.11779/CJGE201405022

Energy and structural effects of granite after high temperature

More Information
  • Received Date: October 27, 2013
  • Published Date: May 20, 2014
  • The triaxial compression mechanical properties of granite under the action of temperature from 25℃ to 1000℃ are investigated by means of the MTS815 hydraulic pressure servo material experiment system. By use of a D8 ADVANCE X-ray diffractometer, X-ray powder diffraction analysis on heated granite is also made. The results show that: (1) The relationship among triaxial compressive strength, axial peak strain of granite and confining pressure after high temperatures is nonlinear quadratic polynomial growth. The failure strain energy of rock samples increases with the increase of the confining pressure significantly, that is, they exhibit a linear relationship. (2) The triaxial compressive strength and failure strain energy of rock samples show a parabola relationship with temperature, with the maximum value being 400℃. (3) Three maximum diffraction intensities of quartz, feldspar and mica increase as the temperature increases before 400℃, then decrease with increasing temperature, and reach the maximum value at 400℃. (4) For the quartz, reversible reaction from quartz into quartz at 573℃ occurs. The differential thermal curve of feldspar shows endothermic valley at 700℃ ~ 900℃, and the structure changes from crystalline phase to amorphous phase. At 997℃, the mineral lattice of mica is damaged, the hydroxy escapes and albite forms. The mechanical properties of rock samples gradually deteriorate as the temperature rises after 400℃ because of the above factors.
  • [1]
    井兰如, 冯夏庭. 放射性废物地质处置中主要岩石力学问题[J]. 岩石力学与工程学报, 2006, 25(4): 833-841. (JING Lan-ru, FENG Xia-ting, Main rock mechanics issues in geological disposal of radioactive wastes[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(4): 833-841. (in Chinese))
    [2]
    王绳祖. 高温高压岩石力学——历史、现状、展望[J].地球物理学进展, 1995, 10(4): 1-31. (WANG Sheng-zu. High- temperature/high-pressure rock mechanics: history, state-of- art and prospect[J]. Progress in Geophysics, 1995, 10(4): 1-31. (in Chinese))
    [3]
    ALSHA YEA N A, KHAN K, ABDULJAUWARD S N. Effects of confining pressure and temperature on mixed-mode(I-II) fracture toughness of a lime-stone rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(4): 629-643.
    [4]
    刘泉声, 许锡昌. 温度作用下脆性岩石的损伤分析[J].岩石力学工程学报, 2000, 19(4): 408-411. (LIU Quan-sheng, XU Xi-chang. Damage analysis of brittle rock at high temperature[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(4): 408-411. (in Chinese))
    [5]
    夏小和, 王颖轶, 黄醒春, 等. 高温作用对大理岩强度及变形特性影响的试验研究[J]. 上海交通大学报, 2004, 38(6): 996-1002. (XIA Xiao-he, WANG Ying-yi, HUANG Xing-chun, et al. Experimental study on high temperature effect’s influence on the strength and deformation properties of marble[J]. Journal of Shanghai Jiaotong University, 2004, 38(6): 996-1002. (in Chinese))
    [6]
    郭印同, 杨春和. 硬石膏常规三轴压缩下强度和变形特性的试验研究[J]. 岩土力学, 2010, 31(6): 1776-1780. (GUO Yin-tong, YANG Chun-he. Experimental investigation on strength and deformation properties of anhydrite under conventional triaxial compression[J]. Rock and Soil Mechanics, 2010, 31(6): 1776-1780. (in Chinese))
    [7]
    杜守继, 刘 华, 职洪涛, 等. 高温后花岗岩力学性能的试验研究[J]. 岩石力学与工程学报, 2004, 23(14): 2359-2364. (DU Shou-ji, LIU Hua, ZHI Hong-tao, et al. Testing study on mechanical properties of post-high-temperature granite[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(14): 2359-2364. (in Chinese))
    [8]
    朱合华, 闫治国, 邓 涛, 等. 3 种岩石高温后力学性质的试验研究[J]. 岩石力学与工程学报, 2006, 25(10): 1945-1950. (ZHU He-hua, YAN Zhi-guo, DENG Tao, et al. Testing study on mechanical properties of tuff, granite and breccia after high temperatures[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(10): 1945-1950. (in Chinese))
    [9]
    蒋海昆, 张 流, 周永胜. 不同温度条件下花岗岩变形声发射时序特征[J]. 地震, 2000, 20(3): 87-94. (JIANG Hai-kun, ZHANG Liu, ZHOU Yong-sheng. Characteristics of AE temporal sequences in the process of deformation and failure of granite at high pressure and different temperatures[J]. Earthquake, 2000, 20(3): 87-94. (in Chinese))
    [10]
    赵 鹏, 谢卫红, 王习术, 等. 高温下岩石SEM实时实验研究[J]. 力学与实践, 2006, 28(3): 64-67. (ZHAO Peng, XIE Wei-hong, WANG Xi-shu, et al. The real time experimental research on rock SEM under high temperature[J]. Mechanics in Engineering, 2006, 28(3): 64-67. (in Chinese))
    [11]
    吴 刚, 邢爱国, 张 磊. 砂岩高温后的力学特性[J]. 岩石力学与工程学报, 2007, 26(10): 2110-2116. (WU Gang, XING Ai-guo, ZHANG Lei. Mechanical characteristics of sandstone after high temperatures[J]. Chinese Journal of Geotechnical Engineering, 2007, 26(10): 2110-2116. (in Chinese))
    [12]
    谢和平, 彭瑞东, 鞠 杨. 岩石变形破坏过程中的能量耗散分析[J].岩石力学与工程学报, 2004, 23(21): 3565-3570. (XIE He-ping, PENG Rui-dong, JU Yang. Energy dissipation of rock deformation and fracture[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(21): 3565-3570. (in Chinese))
    [13]
    谢和平, 彭瑞东, 鞠 杨, 等. 岩石破坏的能量分析初探[J].岩石力学与工程学报, 2005, 24(15): 2603-2608. (XIE He-ping, PENG Rui-dong, JU Yang, et al. On energy analysis of rock failure[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(15): 2603-2608. (in Chinese))
    [14]
    谢和平, 鞠 杨, 黎立云, 等. 岩体变形破坏过程的能量机制[J]. 岩石力学与工程学报, 2008, 27(9): 1729-1740. (XIE He-ping, JU Yang, LI Li-yun, et al. Energy mechanism of deformation and failure of rock masses[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(9): 1729-1740. (in Chinese))
    [15]
    尤明庆, 华安增. 岩石试样破坏过程的能量分析[J]. 岩石力学与工程学报, 2002, 21(6): 778-781. (YOU Ming-qing, HUA An-zeng. Energy analysis of failure process of rock specimens[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(6): 778-781. (in Chinese))
    [16]
    赵忠虎, 谢和平. 岩石变形破坏过程中的能量传递和耗散研究[J]. 四川大学学报: 工程科学版, 2008, 40(2): 26-31. (ZHAO Zhong-hu, XIE He-ping. Energy transfer and energy dissipation in rock deformation and fracture[J]. Journal of Sichuan University (Engineering Science Edition), 2008, 40(2): 26-31. (in Chinese))
    [17]
    刘新荣, 郭建强, 王军保, 等. 基于能量原理盐岩的强度与破坏准则[J]. 岩土力学, 2013, 34(2): 305-310. (LIU Xin-rong, GUO Jian-qiang, WANG Jun-bao, et al. Investigation on mechanical properties and failure criterion of salt rock based on energy principles[J]. Rock and Soil Mechanics, 2013, 34(2): 305-310. (in Chinese))
    [18]
    杨圣奇, 徐卫亚, 苏承东. 岩样单轴压缩变形破坏与能量特征研究[J]. 固体力学学报, 2006, 27(2): 213-216. (YANG Sheng-qi, XU Wei-ya, SU Cheng-dong. Study on the deformation failure and energy properties of rock specimen in uniaxial compression[J]. Acta Mechanica Solida Sinica, 2006, 27(2): 213-216. (in Chinese))
    [19]
    谢和平, 鞠 杨, 黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J]. 岩石力学与工程学报, 2005, 24(17): 3003-3010. (XIE He-ping, JU Yang, LI Li-yun. Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3003-3010. (in Chinese))
    [20]
    杨圣奇, 徐卫亚, 苏承东. 大理岩三轴压缩变形破坏与能量特征研究[J]. 工程力学, 2007, 24(1): 136-142. (YANG Sheng-qi, XU Wei-ya, SU Cheng-dong. Study on the deformation failure and energy properties of marble specimen under triaxial compression[J]. Engineering Mechanics, 2007, 24(1): 136-142. (in Chinese))
    [21]
    刘天为, 何江达, 徐文杰. 大理岩三轴压缩破坏的能量特征分析[J]. 岩土工程学报, 2013, 35(2): 395-400. (LIU Tian-wei, HE Jiang-da, XU Wen-jie. Energy properties of failure of marble samples under triaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2): 395-400. (in Chinese))
    [22]
    徐小丽, 高 峰, 周 清, 等. 高温后岩石变形破坏过程的能量分析[J]. 武汉理工大学学报, 2011, 33(1): 104-107. (XU Xiao-li, GAO Feng, ZHOU Qing, et al. Energy analysis of rock deformation and failure process after high temperature[J]. Journal of Wuhan University of Technology, 2011, 33(1): 104-107. (in Chinese))
    [23]
    徐小丽, 高 峰, 高亚楠, 等. 高温后花岗岩力学性质变化及结构效应研究[J]. 中国矿业大学学报, 2008, 37(3): 402-406. (XU Xiao-li, GAO Feng, GAO Ya-nan, et al. Effect of high temperatures on the mechanical characteristics and crystal structure of granite[J]. Journal of China University of Mining and Technology, 2008, 37(3): 402-406. (in Chinese))
    [24]
    徐小丽. 温度载荷作用下花岗岩力学性质演化及其微观机制研究[D]. 徐州: 中国矿业大学, 2008. (XU Xiao-li. Research on the mechanical characteristics and micromechanism of granite under temperature loads[D]. Xuzhou: China University of Mining and Technology, 2008. (in Chinese))
    [25]
    郝 娟. 新型干法水泥厂煤粉粒径分级燃烧方法研究[D]. 徐州: 中国矿业大学, 2012. (HAO Juan. Study on size-separation combustion of pulverized coals in new dry cement plants[D]. Xuzhou: China University of Mining and Technology, 2012. (in Chinese))
    [26]
    陈国玺, 张月明. 矿物热分析粉晶分析相变图谱手册[M].成都: 四川科学技术出版社, 1989. (CHEN Guo-xi, ZHANG Yue-ming. Mineral thermal analysis spectrum manual of powder diffraction analysis of phase change[M]. Chengdu: Sichuan Science and Technology Press, 1989. (in Chinese))
  • Related Articles

    [1]YANG Xu, CAI Guoqing, LIU Qianqian, LI Fengzeng, SHAN Yepeng. Experimental study on influences of wetting-drying cycles on microstructure and water-retention characteristics of clay[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 11-15. DOI: 10.11779/CJGE2024S20006
    [2]ZHANG Jingyu, ZHAN Runhe, DENG Huafeng, LI Jianlin, WANG Wendong, WAN Liangpeng. Repeated shear mechanical properties and constitutive model of jointed sandstone under heat-wet cycles[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(10): 2148-2157. DOI: 10.11779/CJGE20230652
    [3]WANG Shi-ji, WANG Xiao-qi, LI Da, LI Xian, LIANG Guang-chuan, MUHAMMAD Qayyum Hamka. Evolution of fissures and bivariate-bimodal soil-water characteristic curves of expansive soil under drying-wetting cycles[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 58-63. DOI: 10.11779/CJGE2021S1011
    [4]ZHAO Gui-tao, HAN Zhong, ZOU Wei-lie, WANG Xie-qun. Influences of drying-wetting-freeze-thaw cycles on soil-water and shrinkage characteristics of expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1139-1146. DOI: 10.11779/CJGE202106018
    [5]CAI Zheng-yin, ZHU Rui, HUANG Ying-hao, ZHANG Chen, GUO Wan-li. Centrifugal model tests on deterioration process of canal under cyclic action of coupling wetting-drying and freeze-thaw[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1773-1782. DOI: 10.11779/CJGE202010001
    [6]HUANG Ying-hao, CAI Zheng-yin, ZHU Rui, ZHANG Chen, GUO Wan-li, ZHU Xun, CHEN Yong. Development of centrifuge model test equipment for canals in seasonal frozen areas under cyclic action of wetting-drying and freeze-thaw[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1181-1188. DOI: 10.11779/CJGE202007001
    [7]CAI Zheng-yin, ZHU Xun, HUANG Ying-hao, ZHANG Chen. Evolution rules of fissures in expansive soils under cyclic action of coupling wetting-drying and freeze-thaw[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1381-1389. DOI: 10.11779/CJGE201908001
    [8]WANG Zhang-qiong, YAN E-chuan. Influence of material composition and structural characteristics of rock on freeze-thaw damage and deterioration of schist[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk2): 86-90. DOI: 10.11779/CJGE2015S2018
    [9]JIANG Ji-wei, XIANG Wei, ZENG Wen, JOACHIM Rohn, YAO Yuan. Water-rock (soil) interaction mechanism of Huangtupo riverside landslide in Three Gorges Reservoir[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1209-1216.
    [10]Influence of repeated drying and wetting cycles on mechanical behaviors of unsaturated soil[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1).
  • Cited by

    Periodical cited type(7)

    1. 廖洁,刘斯宏,徐思远,樊科伟,于博文. 土工袋技术在乡村公路软基加固中的应用研究. 公路. 2024(06): 52-61 .
    2. 李钒,林国兵,王雅华,樊科伟. 面板对土工袋挡土墙工作性状影响的足尺试验研究. 水电能源科学. 2023(06): 133-136 .
    3. 关帅,孙嘉辉,刘越,王波,黄泽华. 纤维增强复合材料(FRP)锚索性能及其工程应用. 市政技术. 2023(08): 166-179 .
    4. 曹旻昊. 淤泥质袋装土挡墙技术研究和应用分析. 现代交通技术. 2023(05): 93-96 .
    5. 文华,杨青青,吴学宇,付文涛. 稳定固化土重力式挡土墙承载特性研究. 施工技术(中英文). 2022(20): 70-76 .
    6. 黄英豪,吴敏,陈永,王硕,王文翀,武亚军. 絮凝技术在疏浚淤泥脱水处治中的研究进展. 水道港口. 2022(06): 802-812 .
    7. 中国路基工程学术研究综述·2021. 中国公路学报. 2021(03): 1-49 .

    Other cited types(4)

Catalog

    Article views (345) PDF downloads (320) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return