• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIANG Xiaomin, GU Xiaoqiang, ZHAI Chongpu, WEI Deheng. Anisotropic wave velocities of granular materials and microscopic fabric using X-ray computed tomography[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1398-1407. DOI: 10.11779/CJGE20230425
Citation: LIANG Xiaomin, GU Xiaoqiang, ZHAI Chongpu, WEI Deheng. Anisotropic wave velocities of granular materials and microscopic fabric using X-ray computed tomography[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1398-1407. DOI: 10.11779/CJGE20230425

Anisotropic wave velocities of granular materials and microscopic fabric using X-ray computed tomography

More Information
  • Received Date: May 16, 2023
  • Available Online: November 26, 2023
  • The anisotropy of wave velocities of granular materials is investigated from both the macroscopic and microscopic scales. The effects of stress states on the P- and S-wave velocities propagating along multiple directions in granular samples of PVC particles are examined in a cylindrical torsion-shear apparatus with two bender elements. Using the X-ray computed tomography, the fabric evolution of the specimen, including the coordination number, particle orientation and contact normal, during consolidation along different stress paths is analyzed. The results indicate that an initial stiffness anisotropy can be observed that the horizontal stiffness of the specimen is larger than that in the vertical direction, which is related to the long axes of particles. As the ratio of vertical to horizontal stress increases, the wave velocity along the vertical distribution of direction increases, while the horizontal wave velocity remains nearly constant before an obvious decrease. This trend is strongly associated with the variation of coordination number. Moreover, the ratio of vertical to horizontal stress-normalized wave velocity keeps almost unchanged and then gradually approaches to 1.0 as the stress ratio increases, which is related to the evolution of long axes of particles and normal fabric anisotropy of contact.
  • [1]
    HOQUE E, TATSUOKA F. Effects of stress ratio on small-strain stiffness during triaxial shearing[J]. Géotechnique, 2004, 54(7): 429-439. doi: 10.1680/geot.2004.54.7.429
    [2]
    ARTHUR J R F, MENZIES B K. Inherent anisotropy in a sand[J]. Géotechnique, 1972, 22(1): 115-128. doi: 10.1680/geot.1972.22.1.115
    [3]
    CHAN H T, KENNEY T C. Laboratory investigation of permeability ratio of new liskeard varved soil[J]. Canadian Geotechnical Journal, 1973, 10(3): 453-472. doi: 10.1139/t73-038
    [4]
    建筑与市政工程抗震通用规范: GB 55002—2021[S]. 北京: 中国建筑工业出版社, 2021.

    General Code for Seismic Precaution of Buildings and Municipal Engineering: GB 55002—2021[S]. Beijing: China Agriculture and Builiding Press, 2021. (in Chinese)
    [5]
    汪闻韶. 剪切波速在评估地基饱和砂层地震液化可能性中的应用[J]. 岩土工程学报, 2001, 23(6): 655-658. doi: 10.3321/j.issn:1000-4548.2001.06.001

    WANG Wenshao. Utilization of shear wave velocity in assessment of liquefaction potent ial of saturated sand under level ground during earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(6): 655-658. (in Chinese) doi: 10.3321/j.issn:1000-4548.2001.06.001
    [6]
    黄博, 陈云敏, 殷建华, 等. 控制试样初始剪切模量的动三轴液化研究[J]. 岩土工程学报, 2000, 22(6): 682–685. doi: 10.3321/j.issn:1000-4548.2000.06.010

    HUANG Bo, CHEN Yunmin, YIN Jianhua, et al. Cyclic triaxial tests with controlled elastic shear modulus of specimen[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(6): 682–685. (in Chinese) doi: 10.3321/j.issn:1000-4548.2000.06.010
    [7]
    LEE J S, SANTAMARINA J C. Bender elements: performance and signal interpretation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(9): 1063-1070. doi: 10.1061/(ASCE)1090-0241(2005)131:9(1063)
    [8]
    BELLOTTI R, JAMIOLKOWSKI M, PRESTI D C F L, et al. Anisotropy of small strain stiffness in Ticino sand[J]. Géotechnique, 1996, 46(1): 115-131. doi: 10.1680/geot.1996.46.1.115
    [9]
    FIORAVANTE V. Anisotropy of small strain stiffness of Ticino and Kenya sands from seismic wave propagation measured in triaxial testing[J]. Soils and Foundations, 2000, 40(4): 129-142. doi: 10.3208/sandf.40.4_129
    [10]
    KUWANO R, JARDINE R J. On the applicability of cross-anisotropic elasticity to granular materials at very small strains[J]. Géotechnique, 2002, 52(10): 727-749. doi: 10.1680/geot.2002.52.10.727
    [11]
    ISHIBASHI I, CAPAR O F. Anisotropy and its relation to liquefaction resistance of granular material[J]. Soils and Foundations, 2003, 43(5): 149-159. doi: 10.3208/sandf.43.5_149
    [12]
    EZAOUI A, BENEDETTO H D. Experimental measurements of the global anisotropic elastic behaviour of dry Hostun sand during triaxial tests, and effect of sample preparation[J]. Géotechnique, 2009, 59(7): 621-635. doi: 10.1680/geot.7.00042
    [13]
    HOQUE E, TATSUOKA F, SATO T. Measuring anisotropic elastic properties of sand using a large triaxial specimen[J]. Geotechnical Testing Journal, 1996, 19(4): 411-420. doi: 10.1520/GTJ10718J
    [14]
    GU X Q, YANG J, HUANG M S. DEM simulations of the small strain stiffness of granular soils: effect of stress ratio[J]. Granular Matter, 2013, 15(3): 287-298. doi: 10.1007/s10035-013-0407-y
    [15]
    GU X Q, LIANG X M, HU J. Quantifying fabric anisotropy of granular materials using wave velocity anisotropy: a numerical investigation[J]. Géotechnique, 2023: 1-13.
    [16]
    韩放达, 肖永顺, 常铭, 等. X射线源焦点尺寸测量方法和标准综述[J]. 中国体视学与图像分析, 2014, 19(4): 321-329. https://www.cnki.com.cn/Article/CJFDTOTAL-ZTSX201404001.htm

    HAN Fangda, XIAO Yongshun, CHANG Ming, et al. Review of measurement methods and standards of focal spot size of X-ray sources[J]. Chinese Journal of Stereology and Image Analysis, 2014, 19(4): 321-329. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZTSX201404001.htm
    [17]
    杨欣欣, 郤保平, 何水鑫, 等. 砂岩热冲击破裂特征及其孔隙连通性分析[J]. 岩土工程学报, 2022, 44(10): 1925-1934. doi: 10.11779/CJGE202210019

    YANG Xinxin, XI Baoping, HE Shuixin, et al. Fracture characteristics and pore connectivity of sandstone under thermal shock[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1925-1934. (in Chinese) doi: 10.11779/CJGE202210019
    [18]
    张巍, 梁小龙, 唐心煜, 等. 显微CT扫描南京粉砂空间孔隙结构的精细化表征[J]. 岩土工程学报, 2017, 39(4): 683-689. doi: 10.11779/CJGE201704013

    ZHANG Wei, LIANG Xiaolong, TANG Xinyu, et al. Fine characterization of spatial pore structure of Nanjing silty sand using micro-CT[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 683-689. (in Chinese) doi: 10.11779/CJGE201704013
    [19]
    SUN Q, ZHENG J X. Two-dimensional and three-dimensional inherent fabric in cross-anisotropic granular soils[J]. Computers and Geotechnics, 2019, 116: 103197. doi: 10.1016/j.compgeo.2019.103197
    [20]
    IMSEEH W H, DRUCKREY A M, ALSHIBLI K A. 3D experimental quantification of fabric and fabric evolution of sheared granular materials using synchrotron micro-computed tomography[J]. Granular Matter, 2018, 20(2): 24. doi: 10.1007/s10035-018-0798-x
    [21]
    WIEBICKE M, ANDÒ E, VIGGIANI G, et al. Measuring the evolution of contact fabric in shear bands with X-ray tomography[J]. Acta Geotechnica, 2020, 15(1): 79-93. doi: 10.1007/s11440-019-00869-9
    [22]
    O'DONOVAN J, O'SULLIVAN C, MARKETOS G, et al. Anisotropic stress and shear wave velocity: DEM studies of a crystalline granular material[J]. Géotechnique Letters, 2015, 5: 224-230. doi: 10.1680/jgele.15.00032
    [23]
    YAMASHITA S, KAWAGUCHI T, NAKATA Y, et al. Interpretation of international parallel test on the measurement of gmax using bender elements[J]. Soils and Foundations, 2009, 49(4): 631-650. doi: 10.3208/sandf.49.631
    [24]
    GU X Q, YANG J, HUANG M S, et al. Bender element tests in dry and saturated sand: signal interpretation and result comparison[J]. Soils and Foundations, 2015, 55(5): 951-962. doi: 10.1016/j.sandf.2015.09.002
    [25]
    BOWER A F. Applied Mechanics of Solids[M]. Boca Raton: CRC Press, 2009.
    [26]
    FIORAVANTE V, GIRETTI D, JAMIOLKOWSKI M. Small strain stiffness of carbonate Kenya Sand[J]. Engineering Geology, 2013, 161: 65-80. doi: 10.1016/j.enggeo.2013.04.006
    [27]
    ROESLER S K. Anisotropic Shear Modulus due to Stress Anisotropy[J]. Journal of the Geotechnical Engineering Division, 1979, 105(7): 871-880. doi: 10.1061/AJGEB6.0000835
    [28]
    OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62-66. doi: 10.1109/TSMC.1979.4310076
    [29]
    ANDÒ E, VIGGIANI G, HALL S A, et al. Experimental micro-mechanics of granular media studied by X-ray tomography: recent results and challenges[J]. Géotechnique Letters, 2013, 3(3): 142-146. doi: 10.1680/geolett.13.00036
    [30]
    WIEBICKE M, ANDÒ E, HERLE I, et al. On the metrology of interparticle contacts in sand from X-ray tomography images[J]. Measurement Science and Technology, 2017, 28(12): 124007. doi: 10.1088/1361-6501/aa8dbf
    [31]
    GU X Q, HU J, HUANG M S. Anisotropy of elasticity and fabric of granular soils[J]. Granular Matter, 2017, 19(2): 33. doi: 10.1007/s10035-017-0717-6
    [32]
    OTSUBO M, LIU J M, KAWAGUCHI Y, et al. Anisotropy of elastic wave velocity influenced by particle shape and fabric anisotropy under K condition[J]. Computers and Geotechnics, 2020, 128: 103775. doi: 10.1016/j.compgeo.2020.103775
    [33]
    CHANG C S, YIN Z Y. Micromechanical modeling for inherent anisotropy in granular materials[J]. Journal of Engineering Mechanics, 2010, 136(7): 830-839. doi: 10.1061/(ASCE)EM.1943-7889.0000125
  • Related Articles

    [1]HAN Lei, YE Guan-lin, WANG Jian-hua, YANG Guang-hui, ZHOU Song. Finite element analysis of impact of under-crossing of large shallow shield tunnel on riverbank[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 125-128. DOI: 10.11779/CJGE2015S1025
    [2]HAN Jin-bao, XIONG Ju-hua, SUN Qing, YANG Min. Multi-factor three-dimensional finite element analysis of effects of tunnel construction on adjacent pile foundation[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 339-344.
    [3]XU Wen-qiang, YUAN Fan-fan, WEI Chang-fu, YANG Cao-shuai. Bearing capacity of suction tapered bucket foundations based on three-dimensional finite element numerical analysis[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 485-490.
    [4]WANG Yuanzhan, XIAO Zhong, LI Yuanyin, XIE Shanwen. Finite element analysis for earth pressure on bucket foundation of breakwater[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(4): 622-627.
    [5]HAN Bing, CAO Pinlu. Finite element analysis of interaction between soils and impact sampling bits[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10): 1560-1563.
    [6]JIANG Xinliang, ZONG Jinhui. Three-dimensional finite element analysis of seepage fields in foundation pit[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(5): 564-568.
    [7]HUANG Yu, YASHIMA Atsushi, ZHANG Feng. Finite element analysis of pile-soil-structure dynamic interaction in liquefiable site[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(6): 646-651.
    [8]XING Haofeng, GONG Xiaonan, YANG Xiaojun. Simplified analysis for consolidation of gravel-pile composite foundation[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(5): 521-524.
    [9]LU Xinzheng, SONG Erxiang, JI Lin, SUI Feng. 3-Dimensional FEA for the interaction between supporting structure of excavation and soil in a very deep pit[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(4): 488-491.
    [10]Yu Zehong, Zhang Qisen. Finite Element Analysis for Mechanism of Geonets-Soil Interaction[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(3): 79-85.
  • Cited by

    Periodical cited type(2)

    1. 温志辉,郭树乾,魏建平,张铁岗,王建伟,张立博,任永婕. 低频振动激励煤体共振增渗实验系统研制及应用. 煤田地质与勘探. 2024(09): 31-40 .
    2. 王雷鸣,李硕,尹升华,成亮,张超,陈威,薛森淼. 深地砂岩铀矿溶浸开采体系孔裂-渗流透明表征与定向干预研究进展. 绿色矿山. 2024(04): 381-396 .

    Other cited types(2)

Catalog

    Article views (413) PDF downloads (75) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return