Citation: | LIANG Xiaomin, GU Xiaoqiang, ZHAI Chongpu, WEI Deheng. Anisotropic wave velocities of granular materials and microscopic fabric using X-ray computed tomography[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1398-1407. DOI: 10.11779/CJGE20230425 |
[1] |
HOQUE E, TATSUOKA F. Effects of stress ratio on small-strain stiffness during triaxial shearing[J]. Géotechnique, 2004, 54(7): 429-439. doi: 10.1680/geot.2004.54.7.429
|
[2] |
ARTHUR J R F, MENZIES B K. Inherent anisotropy in a sand[J]. Géotechnique, 1972, 22(1): 115-128. doi: 10.1680/geot.1972.22.1.115
|
[3] |
CHAN H T, KENNEY T C. Laboratory investigation of permeability ratio of new liskeard varved soil[J]. Canadian Geotechnical Journal, 1973, 10(3): 453-472. doi: 10.1139/t73-038
|
[4] |
建筑与市政工程抗震通用规范: GB 55002—2021[S]. 北京: 中国建筑工业出版社, 2021.
General Code for Seismic Precaution of Buildings and Municipal Engineering: GB 55002—2021[S]. Beijing: China Agriculture and Builiding Press, 2021. (in Chinese)
|
[5] |
汪闻韶. 剪切波速在评估地基饱和砂层地震液化可能性中的应用[J]. 岩土工程学报, 2001, 23(6): 655-658. doi: 10.3321/j.issn:1000-4548.2001.06.001
WANG Wenshao. Utilization of shear wave velocity in assessment of liquefaction potent ial of saturated sand under level ground during earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(6): 655-658. (in Chinese) doi: 10.3321/j.issn:1000-4548.2001.06.001
|
[6] |
黄博, 陈云敏, 殷建华, 等. 控制试样初始剪切模量的动三轴液化研究[J]. 岩土工程学报, 2000, 22(6): 682–685. doi: 10.3321/j.issn:1000-4548.2000.06.010
HUANG Bo, CHEN Yunmin, YIN Jianhua, et al. Cyclic triaxial tests with controlled elastic shear modulus of specimen[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(6): 682–685. (in Chinese) doi: 10.3321/j.issn:1000-4548.2000.06.010
|
[7] |
LEE J S, SANTAMARINA J C. Bender elements: performance and signal interpretation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(9): 1063-1070. doi: 10.1061/(ASCE)1090-0241(2005)131:9(1063)
|
[8] |
BELLOTTI R, JAMIOLKOWSKI M, PRESTI D C F L, et al. Anisotropy of small strain stiffness in Ticino sand[J]. Géotechnique, 1996, 46(1): 115-131. doi: 10.1680/geot.1996.46.1.115
|
[9] |
FIORAVANTE V. Anisotropy of small strain stiffness of Ticino and Kenya sands from seismic wave propagation measured in triaxial testing[J]. Soils and Foundations, 2000, 40(4): 129-142. doi: 10.3208/sandf.40.4_129
|
[10] |
KUWANO R, JARDINE R J. On the applicability of cross-anisotropic elasticity to granular materials at very small strains[J]. Géotechnique, 2002, 52(10): 727-749. doi: 10.1680/geot.2002.52.10.727
|
[11] |
ISHIBASHI I, CAPAR O F. Anisotropy and its relation to liquefaction resistance of granular material[J]. Soils and Foundations, 2003, 43(5): 149-159. doi: 10.3208/sandf.43.5_149
|
[12] |
EZAOUI A, BENEDETTO H D. Experimental measurements of the global anisotropic elastic behaviour of dry Hostun sand during triaxial tests, and effect of sample preparation[J]. Géotechnique, 2009, 59(7): 621-635. doi: 10.1680/geot.7.00042
|
[13] |
HOQUE E, TATSUOKA F, SATO T. Measuring anisotropic elastic properties of sand using a large triaxial specimen[J]. Geotechnical Testing Journal, 1996, 19(4): 411-420. doi: 10.1520/GTJ10718J
|
[14] |
GU X Q, YANG J, HUANG M S. DEM simulations of the small strain stiffness of granular soils: effect of stress ratio[J]. Granular Matter, 2013, 15(3): 287-298. doi: 10.1007/s10035-013-0407-y
|
[15] |
GU X Q, LIANG X M, HU J. Quantifying fabric anisotropy of granular materials using wave velocity anisotropy: a numerical investigation[J]. Géotechnique, 2023: 1-13.
|
[16] |
韩放达, 肖永顺, 常铭, 等. X射线源焦点尺寸测量方法和标准综述[J]. 中国体视学与图像分析, 2014, 19(4): 321-329. https://www.cnki.com.cn/Article/CJFDTOTAL-ZTSX201404001.htm
HAN Fangda, XIAO Yongshun, CHANG Ming, et al. Review of measurement methods and standards of focal spot size of X-ray sources[J]. Chinese Journal of Stereology and Image Analysis, 2014, 19(4): 321-329. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZTSX201404001.htm
|
[17] |
杨欣欣, 郤保平, 何水鑫, 等. 砂岩热冲击破裂特征及其孔隙连通性分析[J]. 岩土工程学报, 2022, 44(10): 1925-1934. doi: 10.11779/CJGE202210019
YANG Xinxin, XI Baoping, HE Shuixin, et al. Fracture characteristics and pore connectivity of sandstone under thermal shock[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1925-1934. (in Chinese) doi: 10.11779/CJGE202210019
|
[18] |
张巍, 梁小龙, 唐心煜, 等. 显微CT扫描南京粉砂空间孔隙结构的精细化表征[J]. 岩土工程学报, 2017, 39(4): 683-689. doi: 10.11779/CJGE201704013
ZHANG Wei, LIANG Xiaolong, TANG Xinyu, et al. Fine characterization of spatial pore structure of Nanjing silty sand using micro-CT[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 683-689. (in Chinese) doi: 10.11779/CJGE201704013
|
[19] |
SUN Q, ZHENG J X. Two-dimensional and three-dimensional inherent fabric in cross-anisotropic granular soils[J]. Computers and Geotechnics, 2019, 116: 103197. doi: 10.1016/j.compgeo.2019.103197
|
[20] |
IMSEEH W H, DRUCKREY A M, ALSHIBLI K A. 3D experimental quantification of fabric and fabric evolution of sheared granular materials using synchrotron micro-computed tomography[J]. Granular Matter, 2018, 20(2): 24. doi: 10.1007/s10035-018-0798-x
|
[21] |
WIEBICKE M, ANDÒ E, VIGGIANI G, et al. Measuring the evolution of contact fabric in shear bands with X-ray tomography[J]. Acta Geotechnica, 2020, 15(1): 79-93. doi: 10.1007/s11440-019-00869-9
|
[22] |
O'DONOVAN J, O'SULLIVAN C, MARKETOS G, et al. Anisotropic stress and shear wave velocity: DEM studies of a crystalline granular material[J]. Géotechnique Letters, 2015, 5: 224-230. doi: 10.1680/jgele.15.00032
|
[23] |
YAMASHITA S, KAWAGUCHI T, NAKATA Y, et al. Interpretation of international parallel test on the measurement of gmax using bender elements[J]. Soils and Foundations, 2009, 49(4): 631-650. doi: 10.3208/sandf.49.631
|
[24] |
GU X Q, YANG J, HUANG M S, et al. Bender element tests in dry and saturated sand: signal interpretation and result comparison[J]. Soils and Foundations, 2015, 55(5): 951-962. doi: 10.1016/j.sandf.2015.09.002
|
[25] |
BOWER A F. Applied Mechanics of Solids[M]. Boca Raton: CRC Press, 2009.
|
[26] |
FIORAVANTE V, GIRETTI D, JAMIOLKOWSKI M. Small strain stiffness of carbonate Kenya Sand[J]. Engineering Geology, 2013, 161: 65-80. doi: 10.1016/j.enggeo.2013.04.006
|
[27] |
ROESLER S K. Anisotropic Shear Modulus due to Stress Anisotropy[J]. Journal of the Geotechnical Engineering Division, 1979, 105(7): 871-880. doi: 10.1061/AJGEB6.0000835
|
[28] |
OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62-66. doi: 10.1109/TSMC.1979.4310076
|
[29] |
ANDÒ E, VIGGIANI G, HALL S A, et al. Experimental micro-mechanics of granular media studied by X-ray tomography: recent results and challenges[J]. Géotechnique Letters, 2013, 3(3): 142-146. doi: 10.1680/geolett.13.00036
|
[30] |
WIEBICKE M, ANDÒ E, HERLE I, et al. On the metrology of interparticle contacts in sand from X-ray tomography images[J]. Measurement Science and Technology, 2017, 28(12): 124007. doi: 10.1088/1361-6501/aa8dbf
|
[31] |
GU X Q, HU J, HUANG M S. Anisotropy of elasticity and fabric of granular soils[J]. Granular Matter, 2017, 19(2): 33. doi: 10.1007/s10035-017-0717-6
|
[32] |
OTSUBO M, LIU J M, KAWAGUCHI Y, et al. Anisotropy of elastic wave velocity influenced by particle shape and fabric anisotropy under K condition[J]. Computers and Geotechnics, 2020, 128: 103775. doi: 10.1016/j.compgeo.2020.103775
|
[33] |
CHANG C S, YIN Z Y. Micromechanical modeling for inherent anisotropy in granular materials[J]. Journal of Engineering Mechanics, 2010, 136(7): 830-839. doi: 10.1061/(ASCE)EM.1943-7889.0000125
|
[1] | HAN Lei, YE Guan-lin, WANG Jian-hua, YANG Guang-hui, ZHOU Song. Finite element analysis of impact of under-crossing of large shallow shield tunnel on riverbank[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 125-128. DOI: 10.11779/CJGE2015S1025 |
[2] | HAN Jin-bao, XIONG Ju-hua, SUN Qing, YANG Min. Multi-factor three-dimensional finite element analysis of effects of tunnel construction on adjacent pile foundation[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 339-344. |
[3] | XU Wen-qiang, YUAN Fan-fan, WEI Chang-fu, YANG Cao-shuai. Bearing capacity of suction tapered bucket foundations based on three-dimensional finite element numerical analysis[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 485-490. |
[4] | WANG Yuanzhan, XIAO Zhong, LI Yuanyin, XIE Shanwen. Finite element analysis for earth pressure on bucket foundation of breakwater[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(4): 622-627. |
[5] | HAN Bing, CAO Pinlu. Finite element analysis of interaction between soils and impact sampling bits[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10): 1560-1563. |
[6] | JIANG Xinliang, ZONG Jinhui. Three-dimensional finite element analysis of seepage fields in foundation pit[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(5): 564-568. |
[7] | HUANG Yu, YASHIMA Atsushi, ZHANG Feng. Finite element analysis of pile-soil-structure dynamic interaction in liquefiable site[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(6): 646-651. |
[8] | XING Haofeng, GONG Xiaonan, YANG Xiaojun. Simplified analysis for consolidation of gravel-pile composite foundation[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(5): 521-524. |
[9] | LU Xinzheng, SONG Erxiang, JI Lin, SUI Feng. 3-Dimensional FEA for the interaction between supporting structure of excavation and soil in a very deep pit[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(4): 488-491. |
[10] | Yu Zehong, Zhang Qisen. Finite Element Analysis for Mechanism of Geonets-Soil Interaction[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(3): 79-85. |
1. |
温志辉,郭树乾,魏建平,张铁岗,王建伟,张立博,任永婕. 低频振动激励煤体共振增渗实验系统研制及应用. 煤田地质与勘探. 2024(09): 31-40 .
![]() | |
2. |
王雷鸣,李硕,尹升华,成亮,张超,陈威,薛森淼. 深地砂岩铀矿溶浸开采体系孔裂-渗流透明表征与定向干预研究进展. 绿色矿山. 2024(04): 381-396 .
![]() |