• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIANG Xiaomin, GU Xiaoqiang, ZHAI Chongpu, WEI Deheng. Anisotropic wave velocities of granular materials and microscopic fabric using X-ray computed tomography[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1398-1407. DOI: 10.11779/CJGE20230425
Citation: LIANG Xiaomin, GU Xiaoqiang, ZHAI Chongpu, WEI Deheng. Anisotropic wave velocities of granular materials and microscopic fabric using X-ray computed tomography[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1398-1407. DOI: 10.11779/CJGE20230425

Anisotropic wave velocities of granular materials and microscopic fabric using X-ray computed tomography

More Information
  • Received Date: May 16, 2023
  • Available Online: November 26, 2023
  • The anisotropy of wave velocities of granular materials is investigated from both the macroscopic and microscopic scales. The effects of stress states on the P- and S-wave velocities propagating along multiple directions in granular samples of PVC particles are examined in a cylindrical torsion-shear apparatus with two bender elements. Using the X-ray computed tomography, the fabric evolution of the specimen, including the coordination number, particle orientation and contact normal, during consolidation along different stress paths is analyzed. The results indicate that an initial stiffness anisotropy can be observed that the horizontal stiffness of the specimen is larger than that in the vertical direction, which is related to the long axes of particles. As the ratio of vertical to horizontal stress increases, the wave velocity along the vertical distribution of direction increases, while the horizontal wave velocity remains nearly constant before an obvious decrease. This trend is strongly associated with the variation of coordination number. Moreover, the ratio of vertical to horizontal stress-normalized wave velocity keeps almost unchanged and then gradually approaches to 1.0 as the stress ratio increases, which is related to the evolution of long axes of particles and normal fabric anisotropy of contact.
  • [1]
    HOQUE E, TATSUOKA F. Effects of stress ratio on small-strain stiffness during triaxial shearing[J]. Géotechnique, 2004, 54(7): 429-439. doi: 10.1680/geot.2004.54.7.429
    [2]
    ARTHUR J R F, MENZIES B K. Inherent anisotropy in a sand[J]. Géotechnique, 1972, 22(1): 115-128. doi: 10.1680/geot.1972.22.1.115
    [3]
    CHAN H T, KENNEY T C. Laboratory investigation of permeability ratio of new liskeard varved soil[J]. Canadian Geotechnical Journal, 1973, 10(3): 453-472. doi: 10.1139/t73-038
    [4]
    建筑与市政工程抗震通用规范: GB 55002—2021[S]. 北京: 中国建筑工业出版社, 2021.

    General Code for Seismic Precaution of Buildings and Municipal Engineering: GB 55002—2021[S]. Beijing: China Agriculture and Builiding Press, 2021. (in Chinese)
    [5]
    汪闻韶. 剪切波速在评估地基饱和砂层地震液化可能性中的应用[J]. 岩土工程学报, 2001, 23(6): 655-658. doi: 10.3321/j.issn:1000-4548.2001.06.001

    WANG Wenshao. Utilization of shear wave velocity in assessment of liquefaction potent ial of saturated sand under level ground during earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(6): 655-658. (in Chinese) doi: 10.3321/j.issn:1000-4548.2001.06.001
    [6]
    黄博, 陈云敏, 殷建华, 等. 控制试样初始剪切模量的动三轴液化研究[J]. 岩土工程学报, 2000, 22(6): 682–685. doi: 10.3321/j.issn:1000-4548.2000.06.010

    HUANG Bo, CHEN Yunmin, YIN Jianhua, et al. Cyclic triaxial tests with controlled elastic shear modulus of specimen[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(6): 682–685. (in Chinese) doi: 10.3321/j.issn:1000-4548.2000.06.010
    [7]
    LEE J S, SANTAMARINA J C. Bender elements: performance and signal interpretation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(9): 1063-1070. doi: 10.1061/(ASCE)1090-0241(2005)131:9(1063)
    [8]
    BELLOTTI R, JAMIOLKOWSKI M, PRESTI D C F L, et al. Anisotropy of small strain stiffness in Ticino sand[J]. Géotechnique, 1996, 46(1): 115-131. doi: 10.1680/geot.1996.46.1.115
    [9]
    FIORAVANTE V. Anisotropy of small strain stiffness of Ticino and Kenya sands from seismic wave propagation measured in triaxial testing[J]. Soils and Foundations, 2000, 40(4): 129-142. doi: 10.3208/sandf.40.4_129
    [10]
    KUWANO R, JARDINE R J. On the applicability of cross-anisotropic elasticity to granular materials at very small strains[J]. Géotechnique, 2002, 52(10): 727-749. doi: 10.1680/geot.2002.52.10.727
    [11]
    ISHIBASHI I, CAPAR O F. Anisotropy and its relation to liquefaction resistance of granular material[J]. Soils and Foundations, 2003, 43(5): 149-159. doi: 10.3208/sandf.43.5_149
    [12]
    EZAOUI A, BENEDETTO H D. Experimental measurements of the global anisotropic elastic behaviour of dry Hostun sand during triaxial tests, and effect of sample preparation[J]. Géotechnique, 2009, 59(7): 621-635. doi: 10.1680/geot.7.00042
    [13]
    HOQUE E, TATSUOKA F, SATO T. Measuring anisotropic elastic properties of sand using a large triaxial specimen[J]. Geotechnical Testing Journal, 1996, 19(4): 411-420. doi: 10.1520/GTJ10718J
    [14]
    GU X Q, YANG J, HUANG M S. DEM simulations of the small strain stiffness of granular soils: effect of stress ratio[J]. Granular Matter, 2013, 15(3): 287-298. doi: 10.1007/s10035-013-0407-y
    [15]
    GU X Q, LIANG X M, HU J. Quantifying fabric anisotropy of granular materials using wave velocity anisotropy: a numerical investigation[J]. Géotechnique, 2023: 1-13.
    [16]
    韩放达, 肖永顺, 常铭, 等. X射线源焦点尺寸测量方法和标准综述[J]. 中国体视学与图像分析, 2014, 19(4): 321-329. https://www.cnki.com.cn/Article/CJFDTOTAL-ZTSX201404001.htm

    HAN Fangda, XIAO Yongshun, CHANG Ming, et al. Review of measurement methods and standards of focal spot size of X-ray sources[J]. Chinese Journal of Stereology and Image Analysis, 2014, 19(4): 321-329. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZTSX201404001.htm
    [17]
    杨欣欣, 郤保平, 何水鑫, 等. 砂岩热冲击破裂特征及其孔隙连通性分析[J]. 岩土工程学报, 2022, 44(10): 1925-1934. doi: 10.11779/CJGE202210019

    YANG Xinxin, XI Baoping, HE Shuixin, et al. Fracture characteristics and pore connectivity of sandstone under thermal shock[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1925-1934. (in Chinese) doi: 10.11779/CJGE202210019
    [18]
    张巍, 梁小龙, 唐心煜, 等. 显微CT扫描南京粉砂空间孔隙结构的精细化表征[J]. 岩土工程学报, 2017, 39(4): 683-689. doi: 10.11779/CJGE201704013

    ZHANG Wei, LIANG Xiaolong, TANG Xinyu, et al. Fine characterization of spatial pore structure of Nanjing silty sand using micro-CT[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 683-689. (in Chinese) doi: 10.11779/CJGE201704013
    [19]
    SUN Q, ZHENG J X. Two-dimensional and three-dimensional inherent fabric in cross-anisotropic granular soils[J]. Computers and Geotechnics, 2019, 116: 103197. doi: 10.1016/j.compgeo.2019.103197
    [20]
    IMSEEH W H, DRUCKREY A M, ALSHIBLI K A. 3D experimental quantification of fabric and fabric evolution of sheared granular materials using synchrotron micro-computed tomography[J]. Granular Matter, 2018, 20(2): 24. doi: 10.1007/s10035-018-0798-x
    [21]
    WIEBICKE M, ANDÒ E, VIGGIANI G, et al. Measuring the evolution of contact fabric in shear bands with X-ray tomography[J]. Acta Geotechnica, 2020, 15(1): 79-93. doi: 10.1007/s11440-019-00869-9
    [22]
    O'DONOVAN J, O'SULLIVAN C, MARKETOS G, et al. Anisotropic stress and shear wave velocity: DEM studies of a crystalline granular material[J]. Géotechnique Letters, 2015, 5: 224-230. doi: 10.1680/jgele.15.00032
    [23]
    YAMASHITA S, KAWAGUCHI T, NAKATA Y, et al. Interpretation of international parallel test on the measurement of gmax using bender elements[J]. Soils and Foundations, 2009, 49(4): 631-650. doi: 10.3208/sandf.49.631
    [24]
    GU X Q, YANG J, HUANG M S, et al. Bender element tests in dry and saturated sand: signal interpretation and result comparison[J]. Soils and Foundations, 2015, 55(5): 951-962. doi: 10.1016/j.sandf.2015.09.002
    [25]
    BOWER A F. Applied Mechanics of Solids[M]. Boca Raton: CRC Press, 2009.
    [26]
    FIORAVANTE V, GIRETTI D, JAMIOLKOWSKI M. Small strain stiffness of carbonate Kenya Sand[J]. Engineering Geology, 2013, 161: 65-80. doi: 10.1016/j.enggeo.2013.04.006
    [27]
    ROESLER S K. Anisotropic Shear Modulus due to Stress Anisotropy[J]. Journal of the Geotechnical Engineering Division, 1979, 105(7): 871-880. doi: 10.1061/AJGEB6.0000835
    [28]
    OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62-66. doi: 10.1109/TSMC.1979.4310076
    [29]
    ANDÒ E, VIGGIANI G, HALL S A, et al. Experimental micro-mechanics of granular media studied by X-ray tomography: recent results and challenges[J]. Géotechnique Letters, 2013, 3(3): 142-146. doi: 10.1680/geolett.13.00036
    [30]
    WIEBICKE M, ANDÒ E, HERLE I, et al. On the metrology of interparticle contacts in sand from X-ray tomography images[J]. Measurement Science and Technology, 2017, 28(12): 124007. doi: 10.1088/1361-6501/aa8dbf
    [31]
    GU X Q, HU J, HUANG M S. Anisotropy of elasticity and fabric of granular soils[J]. Granular Matter, 2017, 19(2): 33. doi: 10.1007/s10035-017-0717-6
    [32]
    OTSUBO M, LIU J M, KAWAGUCHI Y, et al. Anisotropy of elastic wave velocity influenced by particle shape and fabric anisotropy under K condition[J]. Computers and Geotechnics, 2020, 128: 103775. doi: 10.1016/j.compgeo.2020.103775
    [33]
    CHANG C S, YIN Z Y. Micromechanical modeling for inherent anisotropy in granular materials[J]. Journal of Engineering Mechanics, 2010, 136(7): 830-839. doi: 10.1061/(ASCE)EM.1943-7889.0000125
  • Related Articles

    [1]FENG Huai-ping, MA De-liang, WANG Zhi-peng, CHANG Jian-mei. Measurement of resistivity of unsaturated soils using van der Pauw method[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 690-696. DOI: 10.11779/CJGE201704014
    [2]LIU Song-yu, BIAN Han-liang, CAI Guo-jun, CHU Ya. Influences of water and oil two-phase on electrical resistivity of oil-contaminated soils[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 170-177. DOI: 10.11779/CJGE201701016
    [3]LIU Ting-fa, NIE Yan-xia, HU Li-ming, ZHOU Qi-you, WEN Qing-bo. Model tests on moisture migration based on high-density electrical resistivity tomography method[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 761-768. DOI: 10.11779/CJGE201604023
    [4]ZHAO Yan-ru, CHEN Xiang-sheng, HUANG Li-ping, ZHOU Zhong-hua, XIE Qiang. Experimental study on electrical resistivity of municipal solid waste[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12): 2205-2216. DOI: 10.11779/CJGE201512010
    [5]GUO Xiu-jun, WU Shui-juan, MA Yuan-yuan. Quantitative investigation of landfill-leachate contaminated sand soil with electrical resistivity method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2066-2071.
    [6]LIU Bin, NIE Li-chao, LI Shu-cai, LI Li-ping, SONG Jie, LIU Zheng-yu. Numerical forward and model tests of water inrush real-time monitoring in tunnels based on electrical resistivity tomography method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2026-2035.
    [7]Numerical modeling of direct current electrical resistivity with 3D FEM based on PCG algorithm[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1846-1855.
    [8]ZHA Fusheng, LIU Songyu, DU Yanjun, CUI Kerui. Quantitative research on microstructures of expansive soils during swelling using electrical resistivity measurements[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(12): 1832-1839.
    [9]HAN Lihua, LIU Songyu, DU Yanjun. New method for testing contaminated soil——electrical resistivity method[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 1028-1032.
    [10]SUN Yue. Numerical analysis for three-dimensional resistivity model by using finite element/infinite element methods[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 733-737.
  • Cited by

    Periodical cited type(11)

    1. 吕庆强,蔡伟. 某库区移民场地条件变化后的砂土液化研究. 地质灾害与环境保护. 2024(01): 70-73 .
    2. 李雨润,范浩然,闫志晓,辛晓梅. 干砂与饱和砂土场地直斜群桩横向动力响应特性对比研究. 自然灾害学报. 2024(03): 202-216 .
    3. 杨洋,魏怡童. 基于分类树的液化概率等级评估新方法. 岩土力学. 2024(07): 2175-2186+2194 .
    4. 李萍萍,赵少飞,鲍俊文,刘子源. 基于标贯试验的含细粒砂土液化概率判别新模型. 防灾减灾工程学报. 2024(05): 1133-1139 .
    5. 袁近远,苏安双,陈龙伟,许成顺,王淼,袁晓铭,张思宇. 基于剪切波速的砾性土液化概率计算的中国方法. 岩土力学. 2024(11): 3378-3387+3415 .
    6. 袁近远,王兰民,汪云龙,袁晓铭. 不同设防水准下场地液化震害风险差异性研究. 岩石力学与工程学报. 2023(01): 246-260 .
    7. 王维铭,陈龙伟,郭婷婷,汪云龙,凌贤长. 基于中国砂土液化数据库的标准贯入试验液化判别方法研究. 岩土力学. 2023(01): 279-288 .
    8. 郝少雷,张兵,徐世光,李岳峰,陈梦瑞,邓立雄,郭薇. 基于SPT-APD-DDA的砂土液化评价方法研究. 地震工程学报. 2023(04): 877-886 .
    9. 李原,王睿,张建民. 地下水位上升对北京土层地震液化的影响. 土木工程学报. 2023(S2): 95-103 .
    10. 赵志江. 泵站基础液化判别方法分析. 水利技术监督. 2023(12): 217-221 .
    11. 邱香,袁晓铭,李鑫洋,汪云龙,李兆焱,张思宇. 不同地区数据下CPT液化判别公式的差异性与互用可行性研究. 土木工程学报. 2022(S1): 241-249 .

    Other cited types(6)

Catalog

    Article views PDF downloads Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return