• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHOU Yan-guo, DING Hai-jun, CHEN Yun-min, HUANG Bo. Characterization of ageing effect of sands based on field testing indices[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(11): 2000-2006. DOI: 10.11779/CJGE201511009
Citation: ZHOU Yan-guo, DING Hai-jun, CHEN Yun-min, HUANG Bo. Characterization of ageing effect of sands based on field testing indices[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(11): 2000-2006. DOI: 10.11779/CJGE201511009

Characterization of ageing effect of sands based on field testing indices

More Information
  • Received Date: September 07, 2014
  • Published Date: November 19, 2015
  • Ageing has significant effect on soil liquefaction resistance, and the quantitative characterization of ageing effect is one of the key research themes in assessment of soil liquefaction. An ageing index (AI) characterizing soil ageing effect is proposed based on small strain shear modulus (Gmax) and cone penetration resistance of CPT testing (qc), with further normalization of soil density and stress state. This index is expressed by a function of the ratio between the fabric parameter of small strain shear modulus and that of large strain penetration resistance. The analysis of laboratory test data shows that the reconstituted sand has a stable reference AI value, while the field data reveal that AI increases with the increase of geologic age of the soil deposit. AI is an apparent parameter as it can characterize the extent of soil ageing without the variable of time, which provides a sound basis for further researches on the effect of soil ageing on liquefaction resistance.
  • [1]
    BOWMAN E T, SOGA K. Mechanisms of setup of displacement piles in sand: Laboratory creep tests[J]. Canadian Geotechnical Journal, 2005, 42(5): 1391-1407.
    [2]
    黄茂松, 陈云敏, 吴世明, 等. 振冲碎石桩加固饱和粉砂粉土地基试验研究[J]. 岩土工程学报, 1992, 14(6): 69-73. (HUANG Mao-song, CHEN Yun-min, WU Shi-ming, et al. Strengthening of saturated silty soils by vibro replacement stone columns[J]. Chinese Journal of Geotechnical Engineering, 1992, 14(6): 69-73. (in Chinese))
    [3]
    王炳辉, 杨树才, 陈国兴, 等. 固结时间对软黏土动剪切模量的影响[J]. 防灾减灾工程学报, 2009, 29(4): 399-404. (WANG Bing-hui, YANG Shu-cai, CHEN Guo-xing, et al. Effect of consolidation time on dynamic shear modulus of soft clay[J]. Journal of Disaster Prevention and Mitigation Engineering, 2009, 29(4): 399-404. (in Chinese))
    [4]
    陈光仔, 蔡袁强, 王 军, 等. 时间效应对砂土小应变动力特性影响及其细观机制研究[J]. 岩石力学与工程学报, 2013, 32(增刊2): 4215-4223. (CHEN Guang-zai, CAI Yuan-qiang, WANG Jun, et al. Research of dynamic properties changes and microscopic mechanism of ageing sand[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(S2): 4215-4223. (in Chinese))
    [5]
    MITCHELL J K, SOLYMAR Z V. Time-dependent strength gain in freshly deposited or densified sand[J]. Journal of Geotechnical Engineering, 1984, 110(11): 1559-1576.
    [6]
    孔纲强, 杨 庆, 郑鹏一, 等. 考虑时间效应的群桩负摩阻力模型试验研究[J]. 岩土工程学报, 2009, 31(12): 1913-1919. (KONG Gang-qiang, YANG Qing, ZHENG Peng-yi, et al. Model tests on negative skin friction for pile groups considering time effect[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(12): 1913-1919. (in Chinese))
    [7]
    ARANGO I, MIGUES R E. Investigation on the seismic liquefaction of old sand deposits[M]. San Francisco: Bechtel Corporation, 1996.
    [8]
    LEON E, GASSMAN S L, TALWANI P. Accounting for soil aging when assessing liquefaction potential[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(3): 363-377.
    [9]
    YOUD T L, IDRISS I M, ANDRUS R D, et al. Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(10): 817-833.
    [10]
    蔡国军, 刘松玉, 童立元, 等. 基于静力触探测试的国内外砂土液化判别方法[J]. 岩石力学与工程学报, 2008, 27(5): 1019-1027. (CAI Guo-jun, LIU Song-yu, TONG Li-yuan, et al. Evaluation of liquefaction of sandy soils based on cone penetration test[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(5): 1019-1027. (in Chinese))
    [11]
    袁晓铭, 曹振中. 砂砾土液化判别的基本方法及计算公式[J]. 岩土工程学报, 2011, 33(4): 509-519. (YUAN Xiao-ming, CAO Zhen-zhong. Fundamental method and foumula for evaluation of liquefaction of gravel soil[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 509-519. (in Chinese))
    [12]
    ARANGO I, LEWIS M R, KRAMER C. Updated liquefaction potential analysis eliminates foundation retrofitting of two critical structures[J]. Soil Dynamics and Earthquake Engineering, 2000, 20(1): 17-25.
    [13]
    HAYATI H, ANDRUS R D, GASSMAN S L, et al. Characterizing the liquefaction resistance of aged soils[C]// Geotechnical Earthquake Engineering and Soil Dynamic IV, ASCE, 2008: 1-10.
    [14]
    MESRI G, FENG T W, BENAK J M. Postdensification penetration resistance of clean sands[J]. Journal of Geotechnical Engineering, 1990, 116(7): 1095-1115.
    [15]
    SCHMERTMANN J H. The mechanical aging of soils[J]. Journal of Geotechnical Engineering, 1991, 117(9): 1288-1330.
    [16]
    周燕国, 陈云敏, 黄 博, 等. 利用弯曲元测量土体表层剪切波速的初步试验[J]. 岩土工程学报, 2008, 30(12): 1883-1887. (ZHOU Yan-guo, CHEN Yun-min, HUANG Bo, et al. Preliminary tests of measuring shear wave velocity on soil surface using bender elements[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(12): 1883-1887. (in Chinese))
    [17]
    战吉艳, 陈国兴, 杨伟林, 等. 苏州第四纪沉积土动剪切模量比和阻尼比试验研究[J]. 岩土工程学报, 2012, 34(3): 559-566. (ZHAN Ji-yan, CHEN Guo-xing, YANG Wei-lin, et al. Experimental study on dynamic shear modulus ration and damping ratio of Suzhou quaternary sedimentary soil[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(3): 559-566. (in Chinese))
    [18]
    凌贤长, 王子玉, 张 锋, 等. 京哈铁路路基冻结粉质黏土动剪切模量试验研究[J]. 岩土工程学报, 2013, 35(增刊2): 38-43. (LING Xian-zhang, WANG Zi-yu, ZHANG Feng, et al. Experimental investigation on dynamic shear modulus of frozen clay from subgrade of Beijing-Harbin Railway[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 38-43. (in Chinese))
    [19]
    孙 锐, 袁晓铭, 刘晓键. 动剪切模量比与剪切波速对地震动影响及等量关系研究[J]. 岩土工程学报, 2009, 31(8): 1267-1274. (SUN Rui, YUAN Xiao-ming, LIU Xiao-jian. Effects of dynamic shear modulus ration and velocity on surface ground motion and their equivalent relations[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(8): 1267-1274. (in Chinese))
    [20]
    ZHOU Y G, CHEN Y M. Laboratory investigation on assessing liquefaction resistance of sandy soils by shear wave velocity[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2007, 133(8): 959-972.
    [21]
    SCHNEIDER J A, MCGILLIVRAY A V, MAYNE P W. Evaluation of SCPTU intra-correlations at sand sites in the Lower Mississippi River valley, USA[C]//Proceedings of the 2nd International Conference on Site Characterization ISC, 2004: 1003-1010.
    [22]
    HARDIN B O, RICHART JR F E. Elastic wave velocities in granular soils[J]. Journal of Soil Mechanics and Foundations Division, ASCE, 1963, 89(1): 33-65.
    [23]
    蔡国军, 刘松玉, PUPPALA A J, 等. 基于 CPTU 测试的桩基承载力可靠性分析[J]. 岩土工程学报, 2011, 33(3): 404-412. (CAI Guo-jun, LIU Song-yu, PUPPALA A J, et al. Reliability assessment of bearing capacity of pile foundation based on CPTU data[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(3): 404-412. (in Chinese))
    [24]
    刘松玉, 蔡国军, 童立元, 等. 基于CPTU测试的先期固结压力确定方法试验研究[J]. 岩土工程学报, 2007, 29(4): 490-495. (LIU Song-yu, CAI Guo-jun, TONG Li-yuan, et al. On preconsolidation pressure of clays from piezocone tests[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(4): 490-495. (in Chinese))
    [25]
    BALDI G, BELLOTTI R, GHIONNA V, et al. Interpretation of CPTs and CPTUs Part II: Drained penetration in sands[C]// Proceedings, Fourth International Geotechnical Seminar on Field Instrumentation and In Situ Measurements. Singapore, 1986.
    [26]
    黄茂松, 吴世明, 赵竹占. 振动挤密砂桩与振冲碎石桩抗液化分析[J]. 浙江大学学报 (工学版), 1992, 26(2): 165-171. (HUANG Mao-song, WU Shi-ming, ZHAO Zhu-zhan. Liquefaction analysis of subsoil strengthed by vibroflotation stone pile method and vibro-compaction sand pile method[J]. Journal of Zhejiang University (Engineering Science), 1992, 26(2): 165-171. (in Chinese))
    [27]
    周 健, 曹 宇, 贾敏才, 等. 强夯一降水联合加固饱和软黏土地基试验研究[J]. 岩土力学, 2003, 24(3): 376-380. (ZHOU Jian, CAO Yu, JIA Min-cai, et al. In-situ test study on soft soils improvement by the DCM combined with dewatering[J]. Rock and Soil Mechanics, 2003, 24(3): 376-380. (in Chinese))
    [28]
    ANDERSON D G, STOKOE K H. Shear modulus: a time-dependent soil property[J]. Dynamic Geotechnical Testing, 1978, 654: 66-90.
    [29]
    RIX G J, STOKOE K H. Correlation of initial tangent modulus and cone penetration resistance[C]// International Symposium on Calibration Chamber Testing. New York: Elsevier Publishing, 1991: 351-362.
    [30]
    FAHEY M, LEHANE B M, STEWART D. Soil stiffness for shallow foundation design in the Perth CBD[J]. Australian Geomechanics Journal, 2003, 38(3): 61-90.
    [31]
    LANCELLOTTA R. Analisi di affidabilita in ingegneria geotecnica[R]. Torino: Politecnico di Torino, 1983. (LANCELLOTTA R. Reliability analysis in geotechnical engineering[R]. Turin: Polytechnic University of Turin, 1983. (in Italian))
    [32]
    ANDRUS R D, HAYATI H, MOHANAN N P. Correcting liquefaction resistance for aged sands using measured to estimated velocity ratio[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(6): 735-744.
    [33]
    SCHNEIDER J A, MOSS R E S. Linking cyclic stress and cyclic strain based methods for assessment of cyclic liquefaction triggering in sands[J]. Géotechnique Letters, 2011, 1(4): 31-36.
    [34]
    SCHNEIDER J A, LEHANE B M. Evaluation of cone penetration test data from a calcareous dune sand[C]// Second International Symposium on Cone Penetration Testing, 'CPT10'. Huntington Beach, 2010: 1-8.
    [35]
    PUPPALA A J, ACAR Y B, TUMAY M T. Cone penetration in very weakly cemented sand[J]. Journal of Geotechnical Engineering, 1995, 121(8): 589-600.
    [36]
    SCHNAID F, YU H S. Interpretation of the seismic cone test in granular soils[J]. Géotechnique, 2007, 57(3): 265-272.
  • Related Articles

    [1]LI Yuanhai, XU Xiaohua, ZHU Honghu, YANG Shuo, TANG Xiaojie, ZHAO Wanyong. Identification and characterization of rock fractures based on computer vision and software development[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(3): 459-469. DOI: 10.11779/CJGE20221239
    [2]ZHOU Yanguo, ZHOU Xinhui, SANG Yijia, SHI Anchi, CHEN Yunmin. Shear wave velocity-based evaluation of liquefaction resistance of in-situ sand with aging effects[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 19-24. DOI: 10.11779/CJGE2023S20047
    [3]ZHAO Teng-yuan, SONG Chao, HE Huan. Bayesian estimation of resilient modulus of Jiangsu soft soils from sparse data—Gaussian process regression and cone penetration test data-based modelling and analysis[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 137-141. DOI: 10.11779/CJGE2021S2033
    [4]ZHAO Yan-hai, YU Jin, ZHOU Chen-hua, ZHAO Kai, XIAO Huai-guang. Characterization of pressure arching effect of arch shell surrounding rock considering deviation of principal stress axis[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1842-1850. DOI: 10.11779/CJGE202110010
    [5]ZHANG Guo-kai, LI Hai-bo, WANG Ming-yang, LI Jie, DENG Shu-xin. Comparative study on damage characterization and damage evolution of rock under uniaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1074-1082. DOI: 10.11779/CJGE201906011
    [6]CAO Zi-jun, ZHENG Shuo, LI Dian-qing, AU Sui-kiu. Probabilistic characterization of underground stratigraphy and its uncertainty based on cone penetration test[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 336-345. DOI: 10.11779/CJGE201802015
    [7]KONG Ling-wei, ZANG Meng, GUO Ai-guo. Structural damage effect on dynamic shear modulus of Zhanjiang clay and quantitative characterization[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2149-2157. DOI: 10.11779/CJGE201712001
    [8]ZHANG Wei, LIANG Xiao-long, TANG Xin-yu, SHI Bin, XU Yan-da, XIAO Rui. Fine characterization of spatial pore structure of Nanjing silty sand using micro-CT[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 683-689. DOI: 10.11779/CJGE201704013
    [9]WANG Ming-yuan, SHAN Zhi-gang, SONG Wei-kang, DI Sheng-jie, HU Sheng-gang, CHEN Fan-fan. Experimental study on resistance of pull-out cone penetration tests[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 167-171. DOI: 10.11779/CJGE2016S2027
    [10]CHENG Ming-shu, WANG Shi-ji, MAO Xin, CHEN Zheng-han, JIANG Sheng-hua. Fissure morphology and mechanical characterization for structure-damaged expansive soil under triaxial compression tests[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 73-78. DOI: 10.11779/CJGE2016S2012

Catalog

    Article views (309) PDF downloads (234) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return