• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHAO Teng-yuan, SONG Chao, HE Huan. Bayesian estimation of resilient modulus of Jiangsu soft soils from sparse data—Gaussian process regression and cone penetration test data-based modelling and analysis[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 137-141. DOI: 10.11779/CJGE2021S2033
Citation: ZHAO Teng-yuan, SONG Chao, HE Huan. Bayesian estimation of resilient modulus of Jiangsu soft soils from sparse data—Gaussian process regression and cone penetration test data-based modelling and analysis[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 137-141. DOI: 10.11779/CJGE2021S2033

Bayesian estimation of resilient modulus of Jiangsu soft soils from sparse data—Gaussian process regression and cone penetration test data-based modelling and analysis

More Information
  • Received Date: August 17, 2021
  • Available Online: December 05, 2022
  • A Gaussian process regression (GPR)-based model for predicting the resilient modulus of Jiangsu soft soils is developed based on the complied database for Jiangsu soft soils in literatures. The model takes the cone penetration test (CPT) data (e.g., tip resistance qc data, and sleeve friction fs data), water content and dry unit weight of soft soils as the input, while provides the predicted resilient modulus as well as quantified uncertainty as the output. By comparing with some conventional machine learning methods, the GPR model can reasonably reflect the correlation between the resilient modulus and the other geotechnical parameters of Jiangsu soft soils. Besides, the GPR model can achieve good performance even when the number of the training dataset is small, which is validated in this study in terms of effectiveness, efficiency and robustness. The GPR method can be considered as a new way for the probabilistic and non-parametric estimation of the resilient modulus of Jiangsu soils.
  • [1]
    陈开圣, 沙爱民. 压实黄土回弹模量试验研究[J]. 岩土力学, 2010, 31(3): 748-752, 759. doi: 10.3969/j.issn.1000-7598.2010.03.014

    CHEN Kai-sheng, SHA Ai-min. Research on resilient modulus test of compacted loess[J]. Rock and Soil Mechanics, 2010, 31(3): 748-752, 759. (in Chinese) doi: 10.3969/j.issn.1000-7598.2010.03.014
    [2]
    武红娟, 徐伟, 王选仓. 土基模量随季节变化规律及其数值的确定[J]. 工程地质学报, 2008, 16(1): 32-36. doi: 10.3969/j.issn.1004-9665.2008.01.007

    WU Hong-juan, XU Wei, WANG Xuan-cang. Seasonal variations of subgrade soil resilient moduli and their value determination[J]. Journal of Engineering Geology, 2008, 16(1): 32-36. (in Chinese) doi: 10.3969/j.issn.1004-9665.2008.01.007
    [3]
    刘维正, 曾奕珺, 姚永胜, 等. 含水率变化下压实路基土动态回弹模量试验研究与预估模型[J]. 岩土工程学报, 2019, 41(1): 175-183. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201901024.htm

    LIU Wei-zheng, ZENG Yi-jun, YAO Yong-sheng, et al. Experimental study and prediction model of dynamic resilient modulus of compacted subgrade soils subjected to moisture variation[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 175-183. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201901024.htm
    [4]
    LIU S Y, ZOU H F, CAI G J, et al. Multivariate correlation among resilient modulus and cone penetration test parameters of cohesive subgrade soils[J]. Engineering Geology, 2016, 209: 128-142. doi: 10.1016/j.enggeo.2016.05.018
    [5]
    MOHAMMAD L N, HERATH A, ABU-FARSAKH M Y, et al. Prediction of resilient modulus of cohesive subgrade soils from dynamic cone penetrometer test parameters[J]. Journal of Materials in Civil Engineering, 2007, 19(11): 986-992. doi: 10.1061/(ASCE)0899-1561(2007)19:11(986)
    [6]
    刘松玉, 吴燕开. 论我国静力触探技术 (CPT)现状与发展[J]. 岩土工程学报, 2004, 26(4): 553-556. doi: 10.3321/j.issn:1000-4548.2004.04.025

    LIU Song-yu, WU Yan-kai. On the state -of-art and development of CPT in China[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(4): 553-556. (in Chinese) doi: 10.3321/j.issn:1000-4548.2004.04.025
    [7]
    张诚厚, 施健, 戴济群. 孔压静力触探试验的应用[J]. 岩土工程学报, 1997, 19(1): 52-59. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC701.007.htm

    ZHANG Cheng-hou, SHI Jian, DAI Ji-qun. The application of piezocone tests in China[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(1): 52-59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC701.007.htm
    [8]
    蔡国军, 刘松玉, 童立元, 等. 基于静力触探测试的国内外砂土液化判别方法[J]. 岩石力学与工程学报, 2008, 27(5): 1019-1027. doi: 10.3321/j.issn:1000-6915.2008.05.018

    CAI Guo-jun, LIU Song-yu, TONG Li-yuan, et al. Evaluation of liquefaction of sandy soils based on cone penetration test[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(5): 1019-1027. (in Chinese) doi: 10.3321/j.issn:1000-6915.2008.05.018
    [9]
    LUNNE T, POWELL J J, ROBERTSON P K. Cone Penetration Testing in Geotechnical Practice[M]. London, UK: Taylor & Francis, 1997.
    [10]
    ZHAO T Y, XU L, WANG Y. Fast non-parametric simulation of 2D multi-layer cone penetration test (CPT) data without pre-stratification using Markov Chain Monte Carlo simulation[J]. Engineering Geology, 2020, 273: 105670. doi: 10.1016/j.enggeo.2020.105670
    [11]
    PHOON K K. Modeling and simulation of stochastic data[C]//GeoCongress 2006. February 26-March 1, 2006, Atlanta, Georgia, USA. Reston, VA, USA: American Society of Civil Engineers, 2006: 1-17.
    [12]
    CHING J, LIN G H, PHOON K K, et al. Correlations among some parameters of coarse-grained soils—the multivariate probability distribution model[J]. Canadian Geotechnical Journal, 2017, 54(9): 1203-1220. doi: 10.1139/cgj-2016-0571
    [13]
    CHING J, PHOON K K. Correlations among some clay parameters—the multivariate distribution[J]. Canadian Geotechnical Journal, 2014, 51(6): 686-704. doi: 10.1139/cgj-2013-0353
    [14]
    CHING J, PHOON K K, LI K H, et al. Multivariate probability distribution for some intact rock properties[J]. Canadian Geotechnical Journal, 2019, 56(8): 1080-1097.
    [15]
    XU L, YAN D D, ZHAO T Y. Probabilistic evaluation of loess landslide impact using multivariate model[J]. Landslides, 2021, 18(3): 1011-1023.
    [16]
    何志昆, 刘光斌, 赵曦晶, 等. 高斯过程回归方法综述[J]. 控制与决策, 2013, 28(8): 1121-1129, 1137. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201308002.htm

    HE Zhi-kun, LIU Guang-bin, ZHAO Xi-jing, et al. Overview of Gaussian process regression[J]. Control and Decision, 2013, 28(8): 1121-1129, 1137. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201308002.htm
    [17]
    RASMUSSEN C E, WILLIAMS C K I. Gaussian Processes for Machine Learning[M]. Cambridge, Massachusetts: The MIT Press, 2005.
  • Cited by

    Periodical cited type(15)

    1. 宋超,赵腾远. 黏土路基回弹模量预测及贝叶斯模型选择研究. 长沙理工大学学报(自然科学版). 2024(01): 88-99 .
    2. 杨威. 基于原位测试方法的土体变形参数研究. 安徽建筑. 2024(04): 141-143 .
    3. 郑可馨,吴益平,李江,苗发盛,柯超. 基于高斯过程回归的岩体结构面粗糙度系数预测模型. 地质科技通报. 2024(04): 252-261 .
    4. 张化进,吴顺川,李兵磊,赵宇松. 基于高斯过程回归的岩石抗剪强度参数不确定性估测. 岩土力学. 2024(S1): 415-423 .
    5. 贾玉博,杨宏伟,粟晓玲,褚江东,徐吉海. 基于水代谢和水循环理论的石羊河流域水资源承载力评价. 水资源保护. 2024(05): 86-94+157 .
    6. 李军. 基于城市级实景三维模型快速构建的方法. 北京测绘. 2024(10): 1437-1442 .
    7. 冯易鑫 ,彭辉 ,罗威 . 聚类分析-神经网络-贝叶斯优化联合识别复合材料参数研究. 力学学报. 2024(11): 3333-3350 .
    8. 李宏宝. 公路工程中软土路基换填施工技术研究. 科学技术创新. 2023(12): 174-177 .
    9. 崔瑜瑜,吴立鹏,沈兴华,王兴召,秦亚琼,刘杰,卢正,吴磊. 粉质黏土基坑卸荷隆起变形的简化计算方法. 岩土力学. 2023(05): 1425-1434 .
    10. 曹阳健. 基于原位测试方法的土体变形参数研究. 砖瓦. 2023(06): 66-69 .
    11. 宋超,赵腾远,许领. 基于贝叶斯高斯过程回归与模型选择的岩石单轴抗压强度估计方法. 岩土工程学报. 2023(08): 1664-1673 . 本站查看
    12. 田波,王昊武,权磊,谢晋德,朱旭伟. 基于CPT试验的多年冻土区路表变形风险评价. 公路交通科技. 2023(09): 1-7+53 .
    13. 徐明,康雅晶,马斯斯,张鹤. 基于贝叶斯优化的XGBoost模型预测路基回弹模量. 公路交通科技. 2023(11): 51-60 .
    14. 赵腾远,宋超,谌文武,郭志谦,许领. 基于k-means聚类与高斯过程分类的土遗址裂隙病害发育等级概率预测. 石窟与土遗址保护研究. 2023(04): 75-86 .
    15. 王建强. 基于泊松曲线法的市政道路软土路基处理方法研究. 工程技术研究. 2022(20): 41-43 .

    Other cited types(2)

Catalog

    Article views (204) PDF downloads (92) Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return