Citation: | ZHAO Teng-yuan, SONG Chao, HE Huan. Bayesian estimation of resilient modulus of Jiangsu soft soils from sparse data—Gaussian process regression and cone penetration test data-based modelling and analysis[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 137-141. DOI: 10.11779/CJGE2021S2033 |
[1] |
陈开圣, 沙爱民. 压实黄土回弹模量试验研究[J]. 岩土力学, 2010, 31(3): 748-752, 759. doi: 10.3969/j.issn.1000-7598.2010.03.014
CHEN Kai-sheng, SHA Ai-min. Research on resilient modulus test of compacted loess[J]. Rock and Soil Mechanics, 2010, 31(3): 748-752, 759. (in Chinese) doi: 10.3969/j.issn.1000-7598.2010.03.014
|
[2] |
武红娟, 徐伟, 王选仓. 土基模量随季节变化规律及其数值的确定[J]. 工程地质学报, 2008, 16(1): 32-36. doi: 10.3969/j.issn.1004-9665.2008.01.007
WU Hong-juan, XU Wei, WANG Xuan-cang. Seasonal variations of subgrade soil resilient moduli and their value determination[J]. Journal of Engineering Geology, 2008, 16(1): 32-36. (in Chinese) doi: 10.3969/j.issn.1004-9665.2008.01.007
|
[3] |
刘维正, 曾奕珺, 姚永胜, 等. 含水率变化下压实路基土动态回弹模量试验研究与预估模型[J]. 岩土工程学报, 2019, 41(1): 175-183. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201901024.htm
LIU Wei-zheng, ZENG Yi-jun, YAO Yong-sheng, et al. Experimental study and prediction model of dynamic resilient modulus of compacted subgrade soils subjected to moisture variation[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 175-183. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201901024.htm
|
[4] |
LIU S Y, ZOU H F, CAI G J, et al. Multivariate correlation among resilient modulus and cone penetration test parameters of cohesive subgrade soils[J]. Engineering Geology, 2016, 209: 128-142. doi: 10.1016/j.enggeo.2016.05.018
|
[5] |
MOHAMMAD L N, HERATH A, ABU-FARSAKH M Y, et al. Prediction of resilient modulus of cohesive subgrade soils from dynamic cone penetrometer test parameters[J]. Journal of Materials in Civil Engineering, 2007, 19(11): 986-992. doi: 10.1061/(ASCE)0899-1561(2007)19:11(986)
|
[6] |
刘松玉, 吴燕开. 论我国静力触探技术 (CPT)现状与发展[J]. 岩土工程学报, 2004, 26(4): 553-556. doi: 10.3321/j.issn:1000-4548.2004.04.025
LIU Song-yu, WU Yan-kai. On the state -of-art and development of CPT in China[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(4): 553-556. (in Chinese) doi: 10.3321/j.issn:1000-4548.2004.04.025
|
[7] |
张诚厚, 施健, 戴济群. 孔压静力触探试验的应用[J]. 岩土工程学报, 1997, 19(1): 52-59. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC701.007.htm
ZHANG Cheng-hou, SHI Jian, DAI Ji-qun. The application of piezocone tests in China[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(1): 52-59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC701.007.htm
|
[8] |
蔡国军, 刘松玉, 童立元, 等. 基于静力触探测试的国内外砂土液化判别方法[J]. 岩石力学与工程学报, 2008, 27(5): 1019-1027. doi: 10.3321/j.issn:1000-6915.2008.05.018
CAI Guo-jun, LIU Song-yu, TONG Li-yuan, et al. Evaluation of liquefaction of sandy soils based on cone penetration test[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(5): 1019-1027. (in Chinese) doi: 10.3321/j.issn:1000-6915.2008.05.018
|
[9] |
LUNNE T, POWELL J J, ROBERTSON P K. Cone Penetration Testing in Geotechnical Practice[M]. London, UK: Taylor & Francis, 1997.
|
[10] |
ZHAO T Y, XU L, WANG Y. Fast non-parametric simulation of 2D multi-layer cone penetration test (CPT) data without pre-stratification using Markov Chain Monte Carlo simulation[J]. Engineering Geology, 2020, 273: 105670. doi: 10.1016/j.enggeo.2020.105670
|
[11] |
PHOON K K. Modeling and simulation of stochastic data[C]//GeoCongress 2006. February 26-March 1, 2006, Atlanta, Georgia, USA. Reston, VA, USA: American Society of Civil Engineers, 2006: 1-17.
|
[12] |
CHING J, LIN G H, PHOON K K, et al. Correlations among some parameters of coarse-grained soils—the multivariate probability distribution model[J]. Canadian Geotechnical Journal, 2017, 54(9): 1203-1220. doi: 10.1139/cgj-2016-0571
|
[13] |
CHING J, PHOON K K. Correlations among some clay parameters—the multivariate distribution[J]. Canadian Geotechnical Journal, 2014, 51(6): 686-704. doi: 10.1139/cgj-2013-0353
|
[14] |
CHING J, PHOON K K, LI K H, et al. Multivariate probability distribution for some intact rock properties[J]. Canadian Geotechnical Journal, 2019, 56(8): 1080-1097.
|
[15] |
XU L, YAN D D, ZHAO T Y. Probabilistic evaluation of loess landslide impact using multivariate model[J]. Landslides, 2021, 18(3): 1011-1023.
|
[16] |
何志昆, 刘光斌, 赵曦晶, 等. 高斯过程回归方法综述[J]. 控制与决策, 2013, 28(8): 1121-1129, 1137. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201308002.htm
HE Zhi-kun, LIU Guang-bin, ZHAO Xi-jing, et al. Overview of Gaussian process regression[J]. Control and Decision, 2013, 28(8): 1121-1129, 1137. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201308002.htm
|
[17] |
RASMUSSEN C E, WILLIAMS C K I. Gaussian Processes for Machine Learning[M]. Cambridge, Massachusetts: The MIT Press, 2005.
|
1. |
宋超,赵腾远. 黏土路基回弹模量预测及贝叶斯模型选择研究. 长沙理工大学学报(自然科学版). 2024(01): 88-99 .
![]() | |
2. |
杨威. 基于原位测试方法的土体变形参数研究. 安徽建筑. 2024(04): 141-143 .
![]() | |
3. |
郑可馨,吴益平,李江,苗发盛,柯超. 基于高斯过程回归的岩体结构面粗糙度系数预测模型. 地质科技通报. 2024(04): 252-261 .
![]() | |
4. |
张化进,吴顺川,李兵磊,赵宇松. 基于高斯过程回归的岩石抗剪强度参数不确定性估测. 岩土力学. 2024(S1): 415-423 .
![]() | |
5. |
贾玉博,杨宏伟,粟晓玲,褚江东,徐吉海. 基于水代谢和水循环理论的石羊河流域水资源承载力评价. 水资源保护. 2024(05): 86-94+157 .
![]() | |
6. |
李军. 基于城市级实景三维模型快速构建的方法. 北京测绘. 2024(10): 1437-1442 .
![]() | |
7. |
冯易鑫 ,彭辉 ,罗威 . 聚类分析-神经网络-贝叶斯优化联合识别复合材料参数研究. 力学学报. 2024(11): 3333-3350 .
![]() | |
8. |
李宏宝. 公路工程中软土路基换填施工技术研究. 科学技术创新. 2023(12): 174-177 .
![]() | |
9. |
崔瑜瑜,吴立鹏,沈兴华,王兴召,秦亚琼,刘杰,卢正,吴磊. 粉质黏土基坑卸荷隆起变形的简化计算方法. 岩土力学. 2023(05): 1425-1434 .
![]() | |
10. |
曹阳健. 基于原位测试方法的土体变形参数研究. 砖瓦. 2023(06): 66-69 .
![]() | |
11. |
宋超,赵腾远,许领. 基于贝叶斯高斯过程回归与模型选择的岩石单轴抗压强度估计方法. 岩土工程学报. 2023(08): 1664-1673 .
![]() | |
12. |
田波,王昊武,权磊,谢晋德,朱旭伟. 基于CPT试验的多年冻土区路表变形风险评价. 公路交通科技. 2023(09): 1-7+53 .
![]() | |
13. |
徐明,康雅晶,马斯斯,张鹤. 基于贝叶斯优化的XGBoost模型预测路基回弹模量. 公路交通科技. 2023(11): 51-60 .
![]() | |
14. |
赵腾远,宋超,谌文武,郭志谦,许领. 基于k-means聚类与高斯过程分类的土遗址裂隙病害发育等级概率预测. 石窟与土遗址保护研究. 2023(04): 75-86 .
![]() | |
15. |
王建强. 基于泊松曲线法的市政道路软土路基处理方法研究. 工程技术研究. 2022(20): 41-43 .
![]() |