• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CAO Zi-jun, ZHENG Shuo, LI Dian-qing, AU Sui-kiu. Probabilistic characterization of underground stratigraphy and its uncertainty based on cone penetration test[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 336-345. DOI: 10.11779/CJGE201802015
Citation: CAO Zi-jun, ZHENG Shuo, LI Dian-qing, AU Sui-kiu. Probabilistic characterization of underground stratigraphy and its uncertainty based on cone penetration test[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 336-345. DOI: 10.11779/CJGE201802015

Probabilistic characterization of underground stratigraphy and its uncertainty based on cone penetration test

More Information
  • Received Date: November 04, 2016
  • Published Date: February 24, 2018
  • A Bayesian framework is developed to probabilistically identify the underground stratigraphy based on Ic data. The proposed Bayesian framework identifies the most probable soil layer boundaries with the consideration of spatial variability of Ic and quantifies the uncertainties in the underground stratigraphy, which provides valuable information for making future site investigation plans and geotechnical designs. A subset simulation-based Bayesian updating algorithm (CBUS) is used to generate posterior samples of soil layer thicknesses and to calculate the model evidence for determining the most probable number of soil layers and the most probable soil layer boundaries, and the standard deviations of boundaries are calculated to quantify the uncertainty in soil layer boundaries. Finally, the proposed approach is illustrated and verified using the real Ic data obtained from a deep excavation site at Yili station of Shanghai No. 10 subway line and simulated Ic data from a virtual site. The results show that the underground stratigraphy identified by the proposed approach is based on the statistical similarity of Ic data. With the increase of statistical difference in Ic data within two adjacent soil layers, the standard deviation of the soil layer boundary between them decreases, and the soil layer boundary identified by the proposed approach is more reliable, and vice versa.
  • [1]
    GB 50021—2001 岩土工程勘察规范[S]. 2009. (GB 50021—2001 Code for investigation of geotechnical engineering[S]. 2009. (in Chinese))
    [2]
    李广信. 我国的岩土工程规范标准纵横谈[J]. 工程勘察, 2004(1): 11-15.
    (LI Guang-xin.Discussion on the code and standard of geotechnical engineering in China[J]. Geotechnical Investigation & Surveying, 2004(1): 11-15. (in Chinese))
    [3]
    DOUGLAS B J, OLSEN R S.Soil classification using electric cone penetrometer[C]// Proceedings of Conference on Cone Penetration Testing and Experience, St. Louis, 1981: 209-227.
    [4]
    ROBERTSON P K, CAMPANELLA R G.Interpretation of cone penetration tests Part I: sand[J]. Canadian Geotechnical Journal, 1983, 20(4): 718-733.
    [5]
    ROBERTSON P K, CAMPANELLA R G.Interpretation of cone penetration tests Part II: clay[J]. Canadian Geotechnical Journal, 1983, 20(4): 734-745.
    [6]
    ROBERTSON P K.Soil classification using the cone penetration test[J]. Canadian Geotechnical Journal, 1990, 27(1): 151-158.
    [7]
    JEFFERIES M G, DAVIES M P.Use of CPTu to estimate equivalent SPT N60[J]. Geotechnical Testing Journal, 1993, 16(4): 458-468.
    [8]
    张诚厚, 施健, 戴济群. 孔压静力触探试验的应用[J]. 岩土工程学报, 1997, 19(1): 52-59.
    (ZHANG Cheng-hou, SHI Jian, DAI Ji-qun.The application of piezocone tests in China[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(1): 52-59. (in Chinese))
    [9]
    ROBERTSON P K.Interpretation of cone penetration tests - a unified approach[J]. Canadian Geotechnical Journal, 2009, 46(11): 121-123.
    [10]
    刘松玉, 蔡国军, 童立元. 现代多功能CPTU技术理论与工程应用[M]. 北京: 科学出版社, 2013.
    (LIU Song-yu, CAI Guo-jun, TONG Li-yuan.Technology theory and engineering application of modern multifunctional CPTU[M]. Beijing: Science Press, 2013. (in Chinese))
    [11]
    ROBERTSON P K, WRIDE C E.Evaluating cyclic liquefaction potential using the cone penetration test[J]. Canadian Geotechnical Journal, 1998, 35(2): 351-359.
    [12]
    刘松玉, 蔡国军, 邹海峰. 基于CPTU的中国实用土分类方法研究[J]. 岩土工程学报, 2013, 35(10): 1765-1776.
    (LIU Song-yu, CAI Guo-jun, ZOU Hai-feng.Practical soil classification methods in China based on piezocone penetration tests[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1765-1776. (in Chinese))
    [13]
    KU C S, JUANG C H, OU C Y.Reliability of CPT Ic as an index for mechanical behavior classification of soils[J]. Géotechnique, 2010, 60(11): 861-875.
    [14]
    WANG Y, HUANG K, CAO Z J.Probabilistic identification of underground soil stratification using cone penetration tests[J]. Canadian Geotechnical Journal, 2013, 50(7): 766-776.
    [15]
    CAO Z J, HUANG K, WANG Y.Bayesian inverse analysis for geotechnical site characterization using cone penetration test[J]. International Journal of Reliability and Safety, 2014, 8(2/3/4): 97-116.
    [16]
    ZHANG Z J, TUMAY M T.Statistical to fuzzy approach toward CPT soil classification[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(3): 179-186.
    [17]
    HEGAZY Y A, MAYNE P W.Objective site characterization using clustering of piezocone data[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(12): 986-996.
    [18]
    蔡国军, 刘松玉, 童立元, 等. 基于聚类分析理论的CPTU土分类方法研究[J]. 岩土工程学报, 2009, 31(3): 416-424.
    (CAI Guo-jun, LIU Song-yu, TONG Li-yuan, et al.Soil classification using CPTU data based upon cluster analysis theory[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(3): 416-424. (in Chinese))
    [19]
    CHING J Y, WANG J S, JUANG C H, et al.Cone penetration test (CPT)-based stratigraphic profiling using the wavelet transform modulus maxima method[J]. Canadian Geotechnical Journal, 2015, 52(12): 1993-2007.
    [20]
    LI J, CASSIDY M J, HUANG J, et al.Probabilistic identification of soil stratification[J]. Géotechnique, 2015, 66(1): 16-26.
    [21]
    CAO Z J, WANG Y.Bayesian approach for probabilistic site characterization using cone penetration tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(2): 267-276.
    [22]
    WANG Y, HUANG K, CAO Z J.Bayesian identification of soil strata in London clay[J]. Géotechnique, 2014, 64(3): 239-246.
    [23]
    CAO Z J, WANG Y.Bayesian model comparison and selection of spatial correlation functions for soil parameters[J]. Structural Safety, 2014, 49: 10-17.
    [24]
    CAO Z J, WANG Y, LI D Q.Quantification of prior knowledge in geotechnical site characterization[J]. Engineering Geology, 2016, 203: 107-116.
    [25]
    TIAN M, LI D Q, CAO Z J, et al.Bayesian identification of random field model using indirect test data[J]. Engineering Geology, 2016, 210: 197-211.
    [26]
    UZIELLI M, VANNUCCHI G.Investigation of correlation structures and weak stationarity using the CPT soil behavior classification index[C]// International Conference on Structural Safety and Reliability·Icossar, 2005.
    [27]
    AU S K, BECK J L.Estimation of small failure probabilities in high dimensions by subset simulation[J]. Probabilistic Engineering Mechanics, 2001, 16(4): 263-277.
    [28]
    AU S K, BECK J L.Subset simulation and its application to seismic risk based on dynamic analysis[J]. Journal of Engineering Mechanics, 2003, 129(8): 901-917.
    [29]
    STRAUB D, PAPAIOANNOU I.Bayesian updating with structural reliability methods[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(3): 04014134.
    [30]
    STRAUB D.Reliability updating with equality information[J]. Probabilistic Engineering Mechanics, 2011,26(2): 254-258.
    [31]
    GARBUNO-INIGO A, DIAZDELAO F A, AU S K, et al.Bayesian updating and model class selection with Subset Simulation[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 317.
    [32]
    曹子君. 子集模拟在边坡可靠性分析中的应用[D]. 成都: 西南交通大学, 2009.
    ( CAO Zi-jun.Application of subset simulation on reliability analysis of slope stability[D]. Chengdu: Southwest Jiaotong University, 2009. (in Chinese))
    [33]
    AU S K, CAO Z J, WANG Y.Implementing advanced Monte Carlo simulation under spreadsheet environment[J]. Structural Safety, 2010, 32(5): 281-292.
    [34]
    WANG Y, CAO Z J, AU S K.Practical reliability analysis of slope stability by advanced Monte Carlo simulations in a spreadsheet[J]. Canadian Geotechnical Journal, 2011, 48(1): 162-172.
    [35]
    李典庆, 肖特, 曹子君, 等. 基于极限平衡法和有限元法的边坡协同式可靠度分析[J]. 岩土工程学报, 2016, 38(6): 1004-1013.
    (LI Dian-qing, XIAO Te, CAO Zi-Jun, et al.Auxiliary slope reliability analysis using limit equilibrium method and finite element method[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(6): 1004-1013. (in Chinese))
    [36]
    李典庆, 肖特, 曹子君, 等. 基于高效随机有限元法的边坡风险评估[J]. 岩土力学, 2016, 37(7): 1994-2003.
    (LI Dian-qing, XIAO Te, CAO Zi-Jun, et al.Slope risk assessment using efficient random finite element method[J]. Rock and Soil Mechanics, 2016, 37(7): 1994-2003. (in Chinese))
    [37]
    LI D Q, XIAO T, CAO Z J, et al.Enhancement of random finite element method in reliability analysis and risk assessment of soil slopes using subset simulation[J]. Landslides, 2016, 13(2): 293-303.
    [38]
    LI H S, AU S K.Design optimization using subset simulation algorithm[J]. Structural Safety, 2010, 32(6): 384-392.
    [39]
    LI H S.Subset simulation for unconstrained global optimization[J]. Applied Mathematical Modelling, 2011, 35(10): 5108-5120.
    [40]
    Mathworks, Inc.MATLAB - the language of technical computing, http://cn.mathworks.com, 2016.
  • Cited by

    Periodical cited type(15)

    1. 宋超,赵腾远. 黏土路基回弹模量预测及贝叶斯模型选择研究. 长沙理工大学学报(自然科学版). 2024(01): 88-99 .
    2. 杨威. 基于原位测试方法的土体变形参数研究. 安徽建筑. 2024(04): 141-143 .
    3. 郑可馨,吴益平,李江,苗发盛,柯超. 基于高斯过程回归的岩体结构面粗糙度系数预测模型. 地质科技通报. 2024(04): 252-261 .
    4. 张化进,吴顺川,李兵磊,赵宇松. 基于高斯过程回归的岩石抗剪强度参数不确定性估测. 岩土力学. 2024(S1): 415-423 .
    5. 贾玉博,杨宏伟,粟晓玲,褚江东,徐吉海. 基于水代谢和水循环理论的石羊河流域水资源承载力评价. 水资源保护. 2024(05): 86-94+157 .
    6. 李军. 基于城市级实景三维模型快速构建的方法. 北京测绘. 2024(10): 1437-1442 .
    7. 冯易鑫 ,彭辉 ,罗威 . 聚类分析-神经网络-贝叶斯优化联合识别复合材料参数研究. 力学学报. 2024(11): 3333-3350 .
    8. 李宏宝. 公路工程中软土路基换填施工技术研究. 科学技术创新. 2023(12): 174-177 .
    9. 崔瑜瑜,吴立鹏,沈兴华,王兴召,秦亚琼,刘杰,卢正,吴磊. 粉质黏土基坑卸荷隆起变形的简化计算方法. 岩土力学. 2023(05): 1425-1434 .
    10. 曹阳健. 基于原位测试方法的土体变形参数研究. 砖瓦. 2023(06): 66-69 .
    11. 宋超,赵腾远,许领. 基于贝叶斯高斯过程回归与模型选择的岩石单轴抗压强度估计方法. 岩土工程学报. 2023(08): 1664-1673 . 本站查看
    12. 田波,王昊武,权磊,谢晋德,朱旭伟. 基于CPT试验的多年冻土区路表变形风险评价. 公路交通科技. 2023(09): 1-7+53 .
    13. 徐明,康雅晶,马斯斯,张鹤. 基于贝叶斯优化的XGBoost模型预测路基回弹模量. 公路交通科技. 2023(11): 51-60 .
    14. 赵腾远,宋超,谌文武,郭志谦,许领. 基于k-means聚类与高斯过程分类的土遗址裂隙病害发育等级概率预测. 石窟与土遗址保护研究. 2023(04): 75-86 .
    15. 王建强. 基于泊松曲线法的市政道路软土路基处理方法研究. 工程技术研究. 2022(20): 41-43 .

    Other cited types(2)

Catalog

    Article views (356) PDF downloads (373) Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return