• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Wei, LIANG Xiao-long, TANG Xin-yu, SHI Bin, XU Yan-da, XIAO Rui. Fine characterization of spatial pore structure of Nanjing silty sand using micro-CT[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 683-689. DOI: 10.11779/CJGE201704013
Citation: ZHANG Wei, LIANG Xiao-long, TANG Xin-yu, SHI Bin, XU Yan-da, XIAO Rui. Fine characterization of spatial pore structure of Nanjing silty sand using micro-CT[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 683-689. DOI: 10.11779/CJGE201704013

Fine characterization of spatial pore structure of Nanjing silty sand using micro-CT

More Information
  • Received Date: January 24, 2016
  • Published Date: May 19, 2017
  • Pore structure is the index reflecting the nature of the physical and mechanical properties of the soil. The resolution scale of the traditional medical CT is not high enough to identify the single grain or pore characterizing the meso-structure of geo-materials. An industrial micro-CT, with a high spatial resolution of 14 μm, is used to scan a Nanjing silty sand specimen fabricated by pluviation. The binary digital image sequence is acquired after preprocessing the CT initial images, and three-dimensional reconstruction is implemented. Arbitrary representative elementary volume (REV) is extracted, and three-dimensional binary matrix is used for the characterization of the REV and for the quantitative calculation. By analyzing the tomographic images, the volume porosity of the whole specimen is calculated, with an error of only 3.93% compared with the experimental porosity. The apparent porosity along the specimen fluctuates between 20.97 and 46.77%. Four typical sections, one horizontal, one tilting with an angle of 60 degrees to the horizon and two orthogonal vertical sections, are extracted from the REV at the bottom of the specimen. Statistical analysis of the preferred orientation is performed, and the results show that the minimum orientation angle occurs at the horizontal section, and one of the two orthogonal vertical sections exhibits the maximum orientation angle and the other exhibits the maximum anisotropic ratio, and the oblique section exhibits approximate isotropy, namely no obvious preferred orientation. The pore network model is used for spatial pore diameter analysis of three extracted REVs, and the results indicate that the maximum pore diameter distributes from 629 to 696 μm, and the minimum pore diameter does from 54 to 77 μm, and the average pore diameter does from 166 to 185 μm, and the pore diameter concentrates from 100 to 200 μm. The proposed method is capable of nondestructive quantitative analysis of pore structure variation of the spatial soil under any effect induced by heat, water or mechanics.
  • [1]
    MITCHELL J K, SOGA K. Fundamentals of soil behavior[M]. New York: Wiley, 2005: 122-123.
    [2]
    王慧妮, 倪万魁. 基于计算机X射线断层术语扫描电镜图像的黄土微结构定量分析[J]. 岩土力学, 2012, 33(1): 243-248. (WANG Hui-ni, NI Wan-Kui. Quantitative analysis of loes microstructure based on CT and SEM images [J]. Rock and Soil Mechanics, 2012, 33(1): 243-248. (in Chinese))
    [3]
    张先伟, 孔令伟. 利用扫描电镜、压汞法、氮气吸附法评价近海黏土孔隙特征[J]. 岩土力学, 2013, 34(增刊2): 134-142. (ZHANG Xian-wei, KONG Ling-wei. Study of pore characteristics of offshore clay by SEM and MIP and NA methods[J]. Rock and Soil Mechanics, 2013, 34(S2): 134-142. (in Chinese))
    [4]
    陈 悦, 李东旭. 压汞法测定材料孔结构的误差分析[J]. 硅酸盐通报, 2006, 25(4): 198-201. (CHEN Yue, LI Dong-xu. Analysis of error for pore structure of porous materials measured by MIP[J]. Bullitin of The Chinese Ceramic Society, 2006, 25(4): 198-201. (in Chinese))
    [5]
    陈世杰, 赵淑萍, 马 巍, 等. 利用CT扫描技术进行冻土研究的现状和展望[J]. 冰川冻土, 2013, 35(1): 193-200. (CHEN Shi-jie, ZHAO Shu-ping, MA Wei, et al. Studying frozen soil with CT technology: present studies and prospects[J]. Journal of Glaciology and Geocryology, 2013 35(1): 193-200. (in Chinese))
    [6]
    方祥位, 申春妮, 陈正汉, 等. 原状Q 2 黄土CT-三轴浸水试验研究[J]. 土木工程学报, 2011, 44(10): 98-106. (FANG Xiang-wei, SHEN Chun-ni, CHEN Zheng-han, et al. Triaxial wetting tests of intact Q 2 loess by computed tomography[J]. China Civil Engieering Journal, 2011, 44(10): 98-106. (in Chinese))
    [7]
    左永振, 程展林, 赵 娜. 千枚岩碎屑土三轴试验剪切带扩展性状的CT研究[J]. 岩土工程学报, 2015, 37(8): 1524-1531. (ZUO Yong-zhen, CHENG Zhan-lin, ZHAO Na. Expansion mechanism of shear bands in phyllite detritus soil by CT technology[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1524-1531. (in Chinese))
    [8]
    姚志华, 陈正汉, 朱元青, 等. 膨胀土在湿干循环和三轴浸过程中细观结构变化的试验研究[J]. 岩土工程学报, 2010, 32(1): 68-76. (YAO Zhi-hua, CHEN Zheng-han, ZHU Yuan-qing, et al. Meso-structural change of remolded expansive soil during wetting-drying cycles and triaxial soaking tests[J]. Chinese Journal of Geotechnical Enigeering, 2010, 32(1): 68-76. (in Chinese))
    [9]
    方建银, 党发宁, 肖耀庭, 等. 粉砂岩三轴压缩CT试验过程的分区定量研究[J]. 岩土力学与工程学报, 2015, 34(10): 1976-1984. (FANG Jian-yin, DANG Fa-ning, XIAO Yao-ting, et al. Quantitative study on the CT test process of siltstone under triaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(10): 1976-1984. (in Chinese))
    [10]
    韩放达, 肖永顺, 常 铭, 等. X射线源焦点尺寸测量方法和标准综述[J]. 中国体视学和图像分析, 2014, 19(4): 321-329. (HAN Fang-da, XIAO Yong-shun, CHANG Ming, et al. Review of measurement methods and standards of focal spot size of X-ray sources[J]. Chinese Journal of Stereology and Image Analysis, 2014, 19(4): 321-329. (in Chinese))
    [11]
    BLUNT M, BIJIELJIC B, DONG H, et al. Pore-scale imaging and modeling[J]. Advances in Water Resources, 2013, 51(1): 197-216.
    [12]
    李 伟, 要惠芳, 刘鸿福, 等. 基于显微CT的不同煤体结构煤三维孔隙精细表征[J]. 煤炭学报, 2014, 39(6): 1127-1132. (LI Wei, YAO Hui-fang, LIU Hong-fu, et al. Advanced characterization of three-dimensional pores in coals with different coal-body structure by micro-CT[J]. Journal of China Coal Society, 2014, 39(6): 1127-1132. (in Chinese))
    [13]
    李建胜, 王 东, 康天合. 基于显微CT试验的岩石孔隙结构算法研究[J]. 岩土工程学报, 2010, 32(11): 1703-1708. (LI Jian-sheng, WANG Dong, KANG Tian-he. Algorithmic study on rock pore structure based on micro-CT experiment[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1703-1708. (in Chinese))
    [14]
    李小春, 曾志姣, 石 露, 等. 岩石微焦CT扫描的三轴仪及其初步应用[J]. 岩石力学与工程学报, 2015, 34(6): 1128-1134. (LI Xiao-chun, ZENG Zhi-jiao, SHI Lu, et al. Triaxial apparatus for micro-focus CT scan of rock and its preliminary application[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(6): 1128-1134. (in Chinese))
    [15]
    FONSECA J, O’SULLIVAN C, COOP M, et al. Quantifying the evolution of soil fabric during shearing using Scalar parameters[J]. Géotechnique, 2013, 63(10): 818-829.
    [16]
    朱建群, 孔令伟, 高文华, 等. 南京砂的稳态特征研究[J]. 岩土工程学报, 2012, 34(5): 931-935. (ZHU Jian-qun, KONG Ling-wei, GAO Wen-hua, et al. Steady-state properties of Nanjing sand[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(5): 931-935. (in Chinese))
    [17]
    朱逢斌, 陈 甦, 孙雷江, 等. 自制砂雨装置填砂装样质量分析[J]. 地下空间与工程学报, 2013, 9(增刊2): 2076-2092. (ZHU Feng-bin, CHEN Su, SUN Lei-jiang, et al. Quality analysis of sand filling by the self-made pluviation device[J]. Chinese Journal of Underground Space and Engineering, 2013, 9(S2): 2076-2092. (in Chinese))
    [18]
    RASBAND W. Online manual for the WCIF-ImageJ collection[EB/OL].http://www.uhnresearch.ca/facilities/wcif/imagej/, 2006.
    [19]
    唐朝生, 施 斌, 王宝军. 基于SEM土体微观结构研究中的影响因素分析[J]. 岩土工程学报, 2008, 30(4): 560-565. (TANG Chao-sheng, SHI Bin, WANG Bao-jun. Factors affecting analysis of soil microstructure using SEM[J]. Chinese Journal of Geotechnical Engieering, 2008, 30(4): 560-565. (in Chinese))
    [20]
    徐日庆, 邓祎文, 徐 波, 等. 基于SEM图像的软土三维孔隙率计算及影响因素分析[J]. 岩石力学与工程学报, 2015, 34(7): 1497-1502. (XU Ri-qing, DENG Wei-wen, XU Bo, et al. Calculation of three-dimensional porosity of soft soil based on SEM image[J]. Chinese Jouranl of Rock Mechanics and Engineering, 2015, 34(7): 1497-1502. (in Chinese))
    [21]
    LIU Chun, SHI Bin, ZHOU Jian, et al. Quantification and characterization of microporosity by image processing, geometric measurement and statistical methods: application on SEM images of clay materials[J]. Applied Clay Science, 2011, 54(1): 97-106.
    [22]
    王宝军. 基于标准差椭圆法SEM图像颗粒定向研究原理与方法[J]. 岩土工程学报, 2009, 31(7): 1082-1087. (WANG Bao-jun. Theories and methods for soil grain orientation distribution in SEM by standard deviational ellipse[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(7): 1082-1087. (in Chinese))
    [23]
    DU Yan-jun, JIANG Ning-jun, LIU Song-yu, et al. Engineering properties and microstructural characteristics of cement solidified zinc-contaminated kaolin clay[J]. Canadian Geotechnical Journal, 2014, 51(3): 289-302.
    [24]
    DONG H, BLUNT M J. Pore-network extraction from micro-computerized-tomography images[J]. Physical Review E, 2009, 80(3): 1-11.
  • Related Articles

    [1]FEI Suo-zhu, TAN Xiao-hui, DONG Xiao-le, ZHA Fu-sheng, XU Long. Prediction of soil-water characteristic curve based on pore size distribution of soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1691-1699. DOI: 10.11779/CJGE202109014
    [2]YANG Zhou-jie, YU Hai-hao, TANG Qin, TIAN Hui-hui, WEI Chang-fu. Effects of sodium chloride solution on swelling pressure and pore distribution of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 77-80. DOI: 10.11779/CJGE2019S2020
    [3]XU Jie, ZHAO Wen-bo, CHEN Yong-hui, LU Jia-nan. Experimental study on initial shear modulus and pore-size distribution of unsaturated loess[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(s1): 227-231. DOI: 10.11779/CJGE2017S1045
    [4]TANG Lin, TANG Xiao-wu, ZHAO Qing-li, WANG Yan, BAI Bin. Analytical prediction and experimental research on pore size of nonwoven geotextiles under unconfined uniaxial tensile strain[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1910-1916. DOI: 10.11779/CJGE201510020
    [5]SUN De-an, GAO You, LIU Wen-jie, WEI Chang-fu, ZHANG Sheng. Soil-water characteristics and pore-size distribution of lateritic clay[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 351-356. DOI: 10.11779/CJGE201502020
    [6]HU Ran, CHEN Yi-feng, ZHOU Chuang-bing. A water retention curve model for deformable soils based on pore size distribution[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1451-1462.
    [7]SHE Wei, TANG Xiao-wu. Change of pore size of woven geotextiles affected by uniaxial tension using image analysis method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(8): 1522-1526.
    [8]LIANG Yue, CHENJian-sheng, CHEN Liang. Numerical simulation model for pore flows and distribution of their velocity[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(7): 1104-1109.
    [9]LI Fuqiang, WANG Zhao, CHEN Lun, XUE Yongping. Digital image analysis to determine pore size distribution of filtration materials[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(6): 857-860.
    [10]WU Fengcai. Measurement of pore size of geotextile under different pressures[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(4): 495-503.

Catalog

    Article views (479) PDF downloads (469) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return