• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YANG Zhou-jie, YU Hai-hao, TANG Qin, TIAN Hui-hui, WEI Chang-fu. Effects of sodium chloride solution on swelling pressure and pore distribution of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 77-80. DOI: 10.11779/CJGE2019S2020
Citation: YANG Zhou-jie, YU Hai-hao, TANG Qin, TIAN Hui-hui, WEI Chang-fu. Effects of sodium chloride solution on swelling pressure and pore distribution of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 77-80. DOI: 10.11779/CJGE2019S2020

Effects of sodium chloride solution on swelling pressure and pore distribution of expansive soils

More Information
  • Received Date: April 29, 2019
  • Published Date: July 19, 2019
  • A series of experiments on swelling pressure are carried out by using the conventional consolidation apparatus, and the effects of different concentrations of sodium chloride solution on the swelling pressure of samples with different initial dry densities are studied. The pore distribution of the samples after the expansive tests is investigated by NMR. The results show that the swelling pressure decreases with the increase of salt concentration under the constant dry density. The results of NMR show that the larger the salt concentration, the more the T2 curve distribution moves to the right, which indicates that the larger pore volume increases and the smaller pore volume decreases. Under the same dry density, the Donnan osmotic pressure decreases gradually with the increase of salt concentration, which leads to the decrease of the swelling pressure. And with a constant volume, because the swelling pressure decreases, the internal swelling pressure decreases accordingly, so the volume of the pores being filled decreases, which leads to larger pores. So the T2 curve of the samples with the same dry density moves to the right with the increasing concentration of salt solution.
  • [1]
    LEE LIM J G. Swelling pressures of compacted Ca-bentonite[J]. Engineering Geology, 2012, 130(2): 20-26.
    [2]
    孙德安, 张龙. 盐溶液饱和高庙子膨润土膨胀特性及预测[J]. 岩土力学, 2013, 34(10): 2790-2795.
    (SUN De-an, ZHANG Long.Swelling characteristics of Gaomiaozi bentonite saturated by salt solution and their prediction[J]. Rock and Soil Mechanics, 2013, 34(10): 2790-2795. (in Chinese))
    [3]
    于海浩, 孙德安, 韦昌富, 等. 氯化钠盐溶液饱和不同初始含水率膨润土的膨胀特性[J]. 岩土工程学报, 2019, 41(3): 595-600.
    (YU Hai-hao, SUN De-an, WEI Chang-fu, et al.Swelling characteristics of bentonite with different initial water contentssaturated by NaCl solution[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 595-600. (in Chinese))
    [4]
    OLA. Bentonite swelling pressure in strong NaCl solutions-Correlation between model calculations and experimentally determined data[R]. Posiva, 1997: 98-101.
    [5]
    TERZAGHI. Modern conceptions concerning foundation engineering[C]// Contributions to Soil Mechanics. New York: John Wiley, 1940: 1-4.
    [6]
    田慧会, 韦昌富. 基于核磁共振技术的土体吸附水含量测试与分析[J]. 中国科学: 技术科学, 2014, 44(3): 295-305.
    (TIAN Hui-hui, WEI Chang-fu.Test and analysis of soil adsorption water content based on nuclear magnetic resonance technology[J]. Science in China, 2014, 44(3): 295-305. (in Chinese))
    [7]
    TOVERY N K.Quantitative analysis of electron micrographs of soil structure[C]// International Symposium on Soil Structure. Stockholm: Swedish Geotechnical Institute, 1973: 50-57.
    [8]
    高国瑞. 近代土质学[M]. 北京: 科学出版社, 2013.
    (GAO Guo-rui.The modern soil science[M]. Beijing: Science Press, 2013. (in Chinese))
    [9]
    MITCHELL J K, SOGA K.Fundamentals of soil behavior[M]. New York: Wiley, 2005.
    [10]
    WEI C F.A theoretical framework for modeling the chemo-mechanical behavior of unsaturated soils[J]. Vadose Zone Journal, 2014, 13(9): 1-21.
    [11]
    MA T T, WEI C F, XIA X L, et al.Soil freezing and soil water retention characteristics: connection and solute effects[J]. Journal of Performance of Constructed Facilities, 2015, 31(1): D4015001.
  • Related Articles

    [1]YING Sai, XIA Xiaozhou, WEN Tao, ZHOU Fengxi, CAO Yapeng, LI Guoyu, ZHANG Qing. Experimental study on freezing characteristic curve of soils based on nuclear magnetic resonance technology[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1437-1444. DOI: 10.11779/CJGE20230301
    [2]WANG Enliang, LI Yuang, REN Zhifeng, JIANG Haiqiang, LIU Chengqian, ZOU Yiyun, DU Shilin. Microstructural change of improved dispersive soil based on scanning electron microscope and nuclear magnetic resonance technology[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1123-1132. DOI: 10.11779/CJGE20220331
    [3]LIANG Weiyun, WEI Changfu, ZHANG Qin, QIN Liuyang, WEN Songsong, YAN Rongtao. Swelling pressure evolution and water distribution characteristics of bentonite during wetting process[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 283-291. DOI: 10.11779/CJGE20211496
    [4]LIU Qian-qian, CAI Guo-qing, HAN Bo-wen, QIN Yu-teng, LI Jian. Experimental study on pore structure and freezing characteristics of graded soils based on NMR[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 178-182. DOI: 10.11779/CJGE2022S1032
    [5]MA Dong-dong, MA Qin-yong, HUANG Kun, ZHANG Rong-rong. Pore structure and dynamic mechanical properties of geopolymer cement soil based on nuclear magnetic resonance technique[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 572-578. DOI: 10.11779/CJGE202103021
    [6]AN Ai-jun, LIAO Jing-yun. Modified mesostructure of Standard Gange Railway expansive soils of Mombasa- Nairobi based on nuclear magnetic resonance and scanning electron microscope[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 152-156. DOI: 10.11779/CJGE2018S2031
    [7]SUN De-an, GAO You, LIU Wen-jie, WEI Chang-fu, ZHANG Sheng. Soil-water characteristics and pore-size distribution of lateritic clay[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 351-356. DOI: 10.11779/CJGE201502020
    [8]HU Ran, CHEN Yi-feng, ZHOU Chuang-bing. A water retention curve model for deformable soils based on pore size distribution[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1451-1462.
    [9]WEI Xin-jiang, CHEN Wei-jun, WEI Gang. Calculation and factors for distribution of initial distribution of peak value of excess pore water pressure due to shield construction[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(2): 280-285.
    [10]LIANG Yue, CHENJian-sheng, CHEN Liang. Numerical simulation model for pore flows and distribution of their velocity[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(7): 1104-1109.
  • Cited by

    Periodical cited type(13)

    1. 赵晶,陈诚,杜棣宾,文桃,简涛,应赛,周继强. 基于NMR的饱和土渗透系数预测方法. 山东大学学报(工学版). 2025(01): 108-116 .
    2. 李鸿玮,马丽娜,张彦辉,李柏生. 干湿循环下基于Wiener退化的水泥基复合加芯墙板寿命预测. 兰州理工大学学报. 2023(01): 22-29 .
    3. 韩立炜,姬伟斌. 降雨对膨胀土孔隙结构的影响研究. 人民黄河. 2023(05): 143-147+162 .
    4. 包义勇,程学磊,李文东,方大转,李顺群,赵磊. 膨胀土地基海绵化改造技术分析. 安徽建筑. 2023(06): 97-98 .
    5. 吴广水,田慧会,郝丰富,王书齐,杨文洲,祝婷梅. 基于核磁共振T_2时间分布快速预测不同干密度土体的渗透系数. 岩土力学. 2023(S1): 513-520 .
    6. 吴广水,王书齐,祝婷梅,杨文洲,施航向,赵延平. 初始含水率和干密度对膨胀土膨胀力影响的试验研究. 河南工程学院学报(自然科学版). 2023(04): 29-32+50 .
    7. 雷胜友,袁文治,翟志刚,田刚,陈雨菲,李思雨,芦地,柳明宇. 盐溶液质量分数对非饱和膨胀土抗剪强度的影响. 河南理工大学学报(自然科学版). 2022(02): 178-184 .
    8. 李宝平,支枭雄,张玉,平高权. NaCl溶液改良膨胀土滞回曲线形态特征. 科学技术与工程. 2022(13): 5322-5330 .
    9. 李宝平,支枭雄,张玉,平高权,杨倩. NaCl溶液改良膨胀土动力特性试验. 中国科技论文. 2022(07): 780-788 .
    10. 雷胜友,田刚,陈雨菲,袁文治,翟志刚. 考虑盐溶液渗入影响的膨胀土边坡稳定性分析. 中国科技论文. 2021(02): 150-157 .
    11. 陈君廉,李辉,谈云志. 盐溶液浸润下团粒膨润土的膨胀与渗透性能研究. 三峡大学学报(自然科学版). 2021(02): 80-85 .
    12. 邱翱博,王欢,张旭,曹义康,杨惠如. 粉砂土改良膨胀土渗透性与孔隙特性研究. 河南大学学报(自然科学版). 2021(05): 614-623 .
    13. 田芳. 冻融循环作用下膨胀土的力学与孔隙分布特点. 山东农业大学学报(自然科学版). 2020(02): 365-369 .

    Other cited types(15)

Catalog

    Article views (270) PDF downloads (126) Cited by(28)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return