• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIANG Weiyun, WEI Changfu, ZHANG Qin, QIN Liuyang, WEN Songsong, YAN Rongtao. Swelling pressure evolution and water distribution characteristics of bentonite during wetting process[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 283-291. DOI: 10.11779/CJGE20211496
Citation: LIANG Weiyun, WEI Changfu, ZHANG Qin, QIN Liuyang, WEN Songsong, YAN Rongtao. Swelling pressure evolution and water distribution characteristics of bentonite during wetting process[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 283-291. DOI: 10.11779/CJGE20211496

Swelling pressure evolution and water distribution characteristics of bentonite during wetting process

More Information
  • Received Date: December 15, 2021
  • Available Online: February 23, 2023
  • The compacted bentonite is widely used as the sealing barrier material, and its swelling pressure is regarded as an important design index. A device based on vapor equilibrium technique is designed for measuring the swelling pressure of expansive soils in unsaturated environment. The nuclear magnetic resonance (NMR) and X-ray diffraction (XRD) techniques are used to analyze the correlation mechanism between water distribution and macroscopic swelling behaviors of the bentonite during wetting process. The test results show that under the relative humidity control, with the decrease of the suction, the swelling pressure first increases linearly and then decreases slightly. When the suction exceeds 21.8 MPa, the water content of the samples with different dry densities is basically the same. In the low suction range, the water content increases with the decrease of the dry density. During the wetting process, the interlayers of the bentonite absorb water layer by layer, forming no more than two layers of adsorbed water. According to the wetting curves with different dry densities, the contents of the adsorbed and capillary water are calculated using the T2 distribution curve. It is found that there is mainly the adsorbed water in the bentonite, with a small amount of capillary water (< 5%). The analysis shows that water is first adsorbed to the interlayer region, and the swelling pressure increases linearly. When a small amount of the capillary water is formed, particle slip leads to a decrease in the swelling pressure. Therefore, the swelling pressure evolution during the wetting process is controlled by interlayer hydration under high suction and affected by changes in pore structure under low suction.
  • [1]
    王驹, 徐国庆, 郑华铃, 等. 中国高放废物地质处置研究进展: 1985—2004[J]. 世界核地质科学, 2005, 22(1): 5-16. doi: 10.3969/j.issn.1672-0636.2005.01.002

    WANG Ju, XU Guoqing, ZHENG Hualing, et al. Geological disposal of high level radioactive waste in China: progress during 1985-2004[J]. World Nuclear Geoscience, 2005, 22(1): 5-16. (in Chinese) doi: 10.3969/j.issn.1672-0636.2005.01.002
    [2]
    陈正汉, 秦冰. 缓冲/回填材料的热-水-力耦合特性及其应用[M]. 北京: 科学出版社, 2017.

    CHEN Zhenghan, QIN Bing. Thermal-Water-Mechanical Coupling Characteristics of Buffer/Backfill Materials and its Application[M]. Beijing: Science Press, 2017. (in Chinese)
    [3]
    谈云志, 胡新江, 喻波, 等. 压实红黏土的恒体积膨胀力与细观机制研究[J]. 岩土力学, 2014, 35(3): 653-658. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201403008.htm

    TAN Yunzhi, HU Xinjiang, YU Bo, et al. Swelling pressure and mesomechanism of compacted laterite under constant volume condition[J]. Rock and Soil Mechanics, 2014, 35(3): 653-658. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201403008.htm
    [4]
    卢肇钧, 吴肖茗, 孙玉珍, 等. 膨胀力在非饱和土强度理论中的作用[J]. 岩土工程学报, 1997, 19(5): 20-27. doi: 10.3321/j.issn:1000-4548.1997.05.004

    LU Zhaojun, WU Xiaoming, SUN Yuzhen, et al. The role of swelling pressure in the shear strength theory of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(5): 20-27. (in Chinese) doi: 10.3321/j.issn:1000-4548.1997.05.004
    [5]
    秦冰, 陈正汉, 刘月妙, 等. 高庙子膨润土GMZ001三向膨胀力特性研究[J]. 岩土工程学报, 2009, 31(5): 756-763. doi: 10.3321/j.issn:1000-4548.2009.05.019

    QIN Bing, CHEN Zhenghan, LIU Yuemiao, et al. Characteristics of 3D swelling pressure of GMZ001 bentonite[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(5): 756-763. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.05.019
    [6]
    文松松, 梁维云, 陈永健, 等. 弱膨胀土的膨胀特性试验研究[J]. 工程地质学报, 2017, 25(3): 706-714. doi: 10.13544/j.cnki.jeg.2017.03.017

    WEN Songsong, LIANG Weiyun, CHEN Yongjian, et al. Experimental study of swelling characteristics of weak expansive soil[J]. Journal of Engineering Geology, 2017, 25(3): 706-714. (in Chinese) doi: 10.13544/j.cnki.jeg.2017.03.017
    [7]
    丁振洲, 郑颖人, 李利晟. 膨胀力变化规律试验研究[J]. 岩土力学, 2007, 28(7): 1328-1332. doi: 10.3969/j.issn.1000-7598.2007.07.008

    DING Zhenzhou, ZHENG Yingren, LI Lisheng. Trial study on variation regularity of swelling force[J]. Rock and Soil Mechanics, 2007, 28(7): 1328-1332. (in Chinese) doi: 10.3969/j.issn.1000-7598.2007.07.008
    [8]
    何芳婵, 李宗坤. 南水北调南阳段弱膨胀土增湿膨胀与力学特性试验研究[J]. 岩土力学, 2013, 34(增刊2): 190-194, 203. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2013S2032.htm

    HE Fangchan, LI Zongkun. Experimental study of wetting expansibility and mechanical properties of weak expansive soil in Nanyang section of South-to-North Water Diversion Project[J]. Rock and Soil Mechanics, 2013, 34(S2): 190-194, 203. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2013S2032.htm
    [9]
    LLORET A, VILLAR M V, SÁNCHEZ M, et al. Mechanical behaviour of heavily compacted bentonite under high suction changes[J]. Géotechnique, 2003, 53(1): 27-40. doi: 10.1680/geot.2003.53.1.27
    [10]
    ROMERO E, GENS A, LLORET A. Suction effects on a compacted clay under non-isothermal conditions[J]. Géotechnique, 2003, 53(1): 65-81. doi: 10.1680/geot.2003.53.1.65
    [11]
    AGUS S S, ARIFIN Y F, TRIPATHY S, et al. Swelling pressure–suction relationship of heavily compacted bentonite–sand mixtures[J]. Acta Geotechnica, 2013, 8(2): 155-165. doi: 10.1007/s11440-012-0189-0
    [12]
    SCHANZ T, AL-BADRAN Y. Swelling pressure characteristics of compacted Chinese Gaomiaozi bentonite GMZ01[J]. Soils and Foundations, 2014, 54(4): 748-759. doi: 10.1016/j.sandf.2014.06.026
    [13]
    YIGZAW Z G, CUISINIER O, MASSAT L, et al. Role of different suction components on swelling behavior of compacted bentonites[J]. Applied Clay Science, 2016, 120: 81-90. doi: 10.1016/j.clay.2015.11.022
    [14]
    ZHANG Z, YE W M, LIU Z R, et al. Mechanical behavior of GMZ bentonite pellet mixtures over a wide suction range[J]. Engineering Geology, 2020, 264: 105383. doi: 10.1016/j.enggeo.2019.105383
    [15]
    DELAGE P, MARCIAL D, CUI Y J, et al. Ageing effects in a compacted bentonite: a microstructure approach[J]. Géotechnique, 2006, 56(5): 291-304. doi: 10.1680/geot.2006.56.5.291
    [16]
    SAIYOURI N, TESSIER D, HICHER P Y. Experimental study of swelling in unsaturated compacted clays[J]. Clay Minerals, 2004, 39(4): 469-479. doi: 10.1180/0009855043940148
    [17]
    LIKOS W J, WAYLLACE A. Porosity evolution of free and confined bentonites during interlayer hydration[J]. Clays and Clay Minerals, 2010, 58(3): 399-414. doi: 10.1346/CCMN.2010.0580310
    [18]
    VILLAR M V, GÓMEZ-ESPINA R, GUTIÉRREZ-NEBOT L. Basal spacings of smectite in compacted bentonite[J]. Applied Clay Science, 2012, 65/66: 95-105. doi: 10.1016/j.clay.2012.05.010
    [19]
    HOLMBOE M, WOLD S, JONSSON M. Porosity investigation of compacted bentonite using XRD profile modeling[J]. Journal of Contaminant Hydrology, 2012, 128(1/2/3/4): 19-32.
    [20]
    田慧会, 韦昌富. 基于核磁共振技术的土体吸附水含量测试与分析[J]. 中国科学: 技术科学, 2014, 44(3): 295-305. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201403009.htm

    TIAN Huihui, WEI Changfu. A NMR-based testing and analysis of adsorbed water content[J]. Scientia Sinica (Technologica), 2014, 44(3): 295-305. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201403009.htm
    [21]
    叶万军, 吴云涛, 杨更社, 等. 干湿循环作用下古土壤细微观结构及宏观力学性能变化规律研究[J]. 岩石力学与工程学报, 2019, 38(10): 2126-2137. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201910018.htm

    YE Wanjun, WU Yuntao, YANG Gengshe, et al. Study on microstructure and macro-mechanical properties of paleosol under dry-wet cycles[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(10): 2126-2137. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201910018.htm
    [22]
    安然, 孔令伟, 黎澄生, 等. 炎热多雨气候下花岗岩残积土的强度衰减与微结构损伤规律[J]. 岩石力学与工程学报, 2020, 39(9): 1902-1911. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202009017.htm

    AN Ran, KONG Lingwei, LI Chengsheng, et al. Strength attenuation and microstructure damage of granite residual soils under hot and rainy weather[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(9): 1902-1911. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202009017.htm
    [23]
    MA T T, WEI C F, YAO C Q, et al. Microstructural evolution of expansive clay during drying–wetting cycle[J]. Acta Geotechnica, 2020, 15(8): 2355-2366. doi: 10.1007/s11440-020-00938-4
    [24]
    ASTM. Standard Test Method for Measuring the Exchange Complex and Cation Exchange Capacity of Inorganic Fine-Grained Soils[S]. ASTM D7503-10, 2010.
    [25]
    张云龙, 项伟, 黄伟, 等. 钠基蒙脱土水合演化机制[J]. 岩土力学, 2019, 40(11): 4391-4400. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201911030.htm

    ZHANG Yunlong, XIANG Wei, HUANG Wei, et al. Hydration evolution mechanism of sodium montmorillonite[J]. Rock and Soil Mechanics, 2019, 40(11): 4391-4400. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201911030.htm
    [26]
    叶为民, 刘樟荣, 崔玉军, 等. 膨润土膨胀力时程曲线的形态特征及其模拟[J]. 岩土工程学报, 2020, 42(1): 29-36. doi: 10.11779/CJGE202001003

    YE Weimin, LIU Zhangrong, CUI Yujun, et al. Features and modelling of time-evolution curves of swelling pressure of bentonite[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 29-36. (in Chinese) doi: 10.11779/CJGE202001003
    [27]
    WANG Q, TANG A M, CUI Y J, et al. The effects of technological voids on the hydro-mechanical behaviour of compacted bentonite-sand mixture[J]. Soils and Foundations, 2013, 53(2): 232-245.
    [28]
    SALAGER S, NUTH M, FERRARI A, et al. Investigation into water retention behaviour of deformable soils[J]. Canadian Geotechnical Journal, 2013, 50(2): 200-208.
    [29]
    LIANG W Y, YAN R T, XU Y F, et al. Swelling pressure of compacted expansive soil over a wide suction range[J]. Applied Clay Science, 2021, 203: 106018.
    [30]
    TIAN H H, WEI C F. Characterization and quantification of pore water in clays during drying process with low-field NMR[J]. Water Resources Research, 2020, 56(10): e2020WR027537.
    [31]
    MORODOME S, KAWAMURA K. Swelling behavior of Na- and Ca-montmorillonite up to 150℃ by in situ X-Ray diffraction experiments[J]. Clays and Clay Minerals, 2009, 57(2): 150-160.
    [32]
    LU N. Generalized soil water retention equation for adsorption and capillarity[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(10): 04016051.
    [33]
    陈正汉. 非饱和土与特殊土力学: 理论创新、科研方法及治学感悟[M]. 北京: 科学出版社, 2021.

    CHEN Zhenghan. Unsaturated Soil and Special Soil Mechanics: Theoretical Innovation, Scientific Research Methods and Research Insights[M]. Beijing: Science Press, 2021. (in Chinese)
    [34]
    PUSCH R. Mineral-water interactions and their influence on the physical behavior of highly compacted Na bentonite[J]. Canadian Geotechnical Journal, 1982, 19(3): 381-387.
    [35]
    DIEUDONNÉ A, VECCHIA G D, CHARLIER R. A water retention model for compacted bentonites[J]. Canadian Geotechnical Journal, 2017, 54(7): 915-925.
  • Other Related Supplements

Catalog

    Article views (325) PDF downloads (80) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return