• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHAO Yan-hai, YU Jin, ZHOU Chen-hua, ZHAO Kai, XIAO Huai-guang. Characterization of pressure arching effect of arch shell surrounding rock considering deviation of principal stress axis[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1842-1850. DOI: 10.11779/CJGE202110010
Citation: ZHAO Yan-hai, YU Jin, ZHOU Chen-hua, ZHAO Kai, XIAO Huai-guang. Characterization of pressure arching effect of arch shell surrounding rock considering deviation of principal stress axis[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1842-1850. DOI: 10.11779/CJGE202110010

Characterization of pressure arching effect of arch shell surrounding rock considering deviation of principal stress axis

More Information
  • Received Date: December 24, 2020
  • Available Online: December 02, 2022
  • The arching effect is the comprehensive performance of pressure transferr and redistribution of rock and soil mass around the excavated area, which widely exists in the self-bearing surrounding rock of underground mining projects. Aiming at the actual characteristics of the far-field arch shell structure outside the fractured arch of overlying strata in the mining area, the deviation response characteristics of the principal stress vector of the rock strata under the action of mining unloading are analyzed based on the principle of Terzaghi's soil arching effect, and by discussing the active released state of vertical pressure and the vertical stress distribution characteristics of overlying strata under the influence of deviation of the principal stress axis, the arching index of compressive stress of key part of the pressure arch in far-field surrounding rock is proposed. The numerical software FLAC3D is used to simulate and calculate the arching law of deviated principle stress of overlying strata in the mining area, and the results show that the deviation angle of the principal stress in the far-field surrounding rock is controlled by the initial major principal stress, lateral pressure coefficient, shear stress increment and changing rate of principal stress difference after mining; the deviation angle of the principal stress of rock strata decreases from the midspan to both sides of the goaf boundary at the same horizontal position; the vertical stress of the exposed rock strata decreases with the increasing deviation angle of the principal stress; the deviation angle of the principal stress, active pressure coefficient and peak value of arching index at the arch top are greater than those in the arch foot region; and the rising vertical stress in the arch foot and arch waist behaves as the bearing pressure. According to the derived mechanical criterion for releasing state of the vertical pressure in rock strata and the arching index of compressive stress, the loading and unloading states of the far-field surrounding rock and the evolution characteristics of pressure arching effect under the influence of deviation of the principal stress axis are characterized.
  • [1]
    宋振骐, 郝建, 石永奎, 等. "实用矿山压力控制理论"的内涵及发展综述[J]. 山东科技大学学报(自然科学版), 2019, 38(1): 5-19. https://www.cnki.com.cn/Article/CJFDTOTAL-SDKY201901001.htm

    SONG Zhen-qi, HAO Jian, SHI Yong-kui, et al. Summary of connotation and development of “practical mine pressure control theory”[J]. Journal of Shandong University of Science and Technology (Natural Science Edition), 2019, 38(1): 5-19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDKY201901001.htm
    [2]
    文志杰, 景所林, 宋振骐, 等. 采场空间结构模型及相关动力灾害控制研究[J]. 煤炭科学技术, 2019, 47(1): 57-66. doi: 10.13199/j.cnki.cst.2019.01.007

    WEN Zhi-jie, JING Suo-lin, SONG Zhen-qi, et al. Research on stope spatial structure model and related dynamic disaster control[J]. Coal Science and Technology, 2019, 47(1): 57-66. (in Chinese) doi: 10.13199/j.cnki.cst.2019.01.007
    [3]
    钱鸣高, 石平五, 许家林. 矿山压力与岩层控制[M]. 徐州: 中国矿业大学出版社, 2010.

    QIAN Ming-gao, SHI Ping-wu, XU Jia-lin. Mine Pressure and Rock Formation Control[M]. Xuzhou: China University of Mining and Technology Press, 2010. (in Chinese)
    [4]
    杜晓丽, 宋宏伟, 陈杰. 煤矿采矿围岩压力拱的演化特征数值模拟研究[J]. 中国矿业大学学报, 2011, 46(6): 863-867. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201106005.htm

    DU Xiao-li, SONG Hong-wei, CHEN Jie. Numerical simulation study on evolution characteristics of pressure arch of surrounding rock in coal mining[J]. Journal of China University of Mining and Technology, 2011, 46(6): 863-867. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201106005.htm
    [5]
    宋宏伟, 杜晓丽. 岩土空洞周围的压力拱及其特性[M]. 北京: 煤炭工业出版社, 2012.

    SONG Hong-wei, DU Xiao-li. Pressure Arch Around Rock and Soil Cavity and Its Characteristics[M]. Beijing: Coal Industry Press, 2012. (in Chinese)
    [6]
    谢广祥. 综放工作面及其围岩宏观应力壳力学特征[J]. 煤炭学报, 2005, 30(3): 309-313. doi: 10.3321/j.issn:0253-9993.2005.03.009

    XIE Guang-xiang. Mechanical characteristics of the macroscopic stress shell of fully mechanized caving face and its surrounding rock[J]. Journal of China Coal Society, 2005, 30(3): 309-313. (in Chinese) doi: 10.3321/j.issn:0253-9993.2005.03.009
    [7]
    史红, 姜福兴. 充分采动阶段覆岩多层空间结构支承压力研究[J]. 煤炭学报, 2009, 34(5): 605-609. doi: 10.3321/j.issn:0253-9993.2009.05.006

    SHI Hong, JIANG Fu-xing. Research on supporting pressure of overlying strata multilayer spatial structure in full mining stage[J]. Journal of China Coal Society, 2009, 34(5): 605-609. (in Chinese) doi: 10.3321/j.issn:0253-9993.2009.05.006
    [8]
    杨振国, 李铁. 高位关键层对压力拱演化规律影响的研究[J]. 煤矿安全, 2015, 46(4): 40-43. doi: 10.3969/j.issn.1008-4495.2015.04.011

    YANG Zhen-guo, LI Tie. Research on the influence of high key layer on the evolution law of pressure arch[J]. Safety in Coal Mines, 2015, 46(4): 40-43. (in Chinese) doi: 10.3969/j.issn.1008-4495.2015.04.011
    [9]
    HUANG Z P, BROCH E, LU M. Cavern roof stability mechanism of arching and stabilization by rockbolting[J]. Tunnelling and Underground Space Technology, 2002, 17(3): 249-261. doi: 10.1016/S0886-7798(02)00010-X
    [10]
    梁晓丹, 刘刚, 赵坚. 地下工程压力拱拱体的确定与成拱分析[J]. 河海大学学报(自然科学版), 2005, 33(3): 314-317. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX200503018.htm

    LIANG Xiao-dan, LIU Gang, ZHAO Jian. Determination of pressure arch in underground engineering and analysis of arch formation[J]. Journal of Hohai University (Natural Science Edition), 2005, 33(3): 314-317. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX200503018.htm
    [11]
    WANG Y C, JING H W, ZHANG Q, LUO N, YIN X. Prediction of collapse scope of deep-buried tunnels using pressure arch theory[J]. Mathematical Problems in Engineering, 2016(4): 1-10.
    [12]
    陈若曦, 朱斌, 陈云敏, 等. 基于主应力轴旋转理论的修正Terzaghi松动土压力[J]. 岩土力学, 2010, 31(5): 1402-1406. doi: 10.3969/j.issn.1000-7598.2010.05.009

    CHEN Ruo-xi, ZHU Bin, CHEN Yun-min, et al. Modified Terzaghi loosening earth pressure based on principal stress axis rotation theory[J]. Rock and Soil Mechanics, 2010, 31(5): 1402-1406. (in Chinese) doi: 10.3969/j.issn.1000-7598.2010.05.009
    [13]
    黎春林. 盾构隧道施工松动土压力计算方法研究[J]. 岩土工程学报, 2014, 36(9): 1714-1720. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201409024.htm

    LI Chun-lin. Method for calculating loosening earth pressure during construction of shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1714-1720. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201409024.htm
    [14]
    汪丁建, 唐辉明, 李长冬, 等. 考虑主应力偏转的土体浅埋隧道支护压力研究[J]. 岩土工程学报, 2016, 38(5): 804-810. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201605005.htm

    WANG Ding-jian, TANG Hui-ming, LI Chang-dong, et al. Research on support pressure of shallow tunnel in soil considering deflection of principal stress[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 804-810. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201605005.htm
    [15]
    赖丰文, 陈福全, 万梁龙. 考虑不完全土拱效应的浅层地基竖向应力计算[J]. 岩土力学, 2018, 39(7): 2546-2554. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201807027.htm

    LAI Feng-wen, CHEN Fu-quan, WAN Liang-long. Calculation of vertical stress of shallow foundation considering incomplete soil arching effect[J]. Rock and Soil Mechanics, 2018, 39(7): 2546-2554. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201807027.htm
    [16]
    ZHAO Y H, WANG S R, ZOU Y F, et al. Pressure-arching characteristics of fractured strata structure during shallow horizontal coal mining[J]. Tehnicki Vjesnik, 2018, 25(5): 1457-1466.
    [17]
    REZAEI M, HASSANI M F, MAIDI A. Determination of longwall mining-induced stress using the strain energy method[J]. Rock Mechanics and Rock Engineering, 2015, 48(6): 2421-2433.
    [18]
    BASARIR H, OGE I F, AYDIN O. Prediction of the stresses around main and tail gates during top coal caving by 3D numerical analysis[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 76: 88-97.
    [19]
    XUE D J, WANG J Q, ZHAO Y W, et al. Quantitative determination of mining-induced discontinuous stress drop in coal[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 111: 1-11.
    [20]
    任艳芳, 齐庆新. 浅埋煤层长壁开采围岩应力场特征研究[J]. 煤炭学报, 2011, 36(10): 1612-1618. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201110002.htm

    REN Yan-fang, QI Qing-xin. Research on stress field characteristics of surrounding rock in shallow coal seam longwall mining[J]. Journal of China Coal Society, 2011, 36(10): 1612-1618. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201110002.htm
    [21]
    霍丙杰, 于斌, 张宏伟, 等. 多层坚硬顶板采场覆岩"拱壳"大结构形成机理研究[J]. 煤炭科学技术, 2016, 44(11): 18-23. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201611004.htm

    HUO Bin-jie, YU Bin, ZHANG Hong-wei, et al. Study on the formation mechanism of the "arch shell" large structure of the overlying strata in the stope with multi-layer hard roof[J]. Coal Science and Technology, 2016, 44(11): 18-23. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201611004.htm
    [22]
    XIA B W, FU Y H, ZHANG X, et al. Impact analysis of hard roof on the morphological evolution of stress arch[J]. Journal of Engineering Science and Technology Review, 2019, 12(1): 153-162.
    [23]
    徐祝贺, 李全生, 李晓斌, 等. 浅埋高强度开采覆岩结构演化及地表损伤研究[J]. 煤炭学报, 2020, 45(8): 2728-2739. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202008004.htm

    XU Zhu-he, LI Quan-sheng, LI Xiao-bin, et al. Structural evolution of overburden and surface damage caused by high-intensity mining with shallow depth[J]. Journal of China Coal Society, 2020, 45(8): 2728-2739. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202008004.htm
    [24]
    王家臣, 王兆会, 杨杰, 等. 千米深井超长工作面采动应力旋转特征及应用[J]. 煤炭学报, 2020, 45(3): 876-888. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202003003.htm

    WANG Jia-chen, WANG Zhao-hui, YANG Jie, et al. Mining-induced stress rotation and its application in longwall facewith large length in kilometer deep coal mine[J]. Journal of China Coal Society, 2020, 45(3): 876-888. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202003003.htm
    [25]
    谢和平, 周宏伟, 刘建锋, 等. 不同开采条件下采动力学行为研究[J]. 煤炭学报, 2011, 36(7): 1067-1074. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201107002.htm

    XIE He-ping, ZHOU Hong-wei, LIU Jian-feng, et al. Research on mining dynamics behavior under different mining conditions[J]. Journal of China Coal Society, 2011, 36(7): 1067-1074. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201107002.htm
    [26]
    宋振骐, 刘义学, 陈孟伯, 等. 岩梁裂断前后的支承压力显现及其应用的探讨[J]. 山东矿业学院学报, 1984(1): 29-41. https://www.cnki.com.cn/Article/CJFDTOTAL-SDKY198401002.htm

    SONG Zhen-qi, LIU Yi-xue, CHEN Meng-bo, et al. Discussion on the appearance and application of supporting pressure before and after rock beam fracture[J]. Journal of Shandong Institute of Mining and Technology, 1984(1): 29-41. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDKY198401002.htm
    [27]
    陈国舟, 周国庆. 考虑土拱效应的滑移面间竖向应力研究[J]. 中国矿业大学学报, 2014, 43(3): 374-379. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201403002.htm

    CHEN Guo-zhou, ZHOU Guo-qing. Study on vertical stress between sliding surfaces considering soil arching effect[J]. Journal of China University of Mining and Technology, 2014, 43(3): 374-379. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201403002.htm
    [28]
    李建贺, 盛谦, 朱泽奇, 等. Mine-by试验洞开挖过程中围岩应力路径与破坏模式分析[J]. 岩石力学与工程学报, 2017, 36(4): 821-830. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201704006.htm

    LI Jian-he, SHENG Qian, ZHU Ze-qi, et al. Analysis of stress path and failure mode of surrounding rock during mine-by test tunnel excavation[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(4): 821-830. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201704006.htm
    [29]
    庞义辉, 王国法, 李冰冰. 深部采场覆岩应力路径效应与失稳过程分析[J]. 岩石力学与工程学报, 2020, 39(4): 682-694. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202004003.htm

    PANG Yi-hui, WANG Guo-fa, LI Bing-bing. Stress path effect and instability process analysis of overlying strata in deep stopes[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(4): 682-694. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202004003.htm
  • Cited by

    Periodical cited type(15)

    1. 宋超,赵腾远. 黏土路基回弹模量预测及贝叶斯模型选择研究. 长沙理工大学学报(自然科学版). 2024(01): 88-99 .
    2. 杨威. 基于原位测试方法的土体变形参数研究. 安徽建筑. 2024(04): 141-143 .
    3. 郑可馨,吴益平,李江,苗发盛,柯超. 基于高斯过程回归的岩体结构面粗糙度系数预测模型. 地质科技通报. 2024(04): 252-261 .
    4. 张化进,吴顺川,李兵磊,赵宇松. 基于高斯过程回归的岩石抗剪强度参数不确定性估测. 岩土力学. 2024(S1): 415-423 .
    5. 贾玉博,杨宏伟,粟晓玲,褚江东,徐吉海. 基于水代谢和水循环理论的石羊河流域水资源承载力评价. 水资源保护. 2024(05): 86-94+157 .
    6. 李军. 基于城市级实景三维模型快速构建的方法. 北京测绘. 2024(10): 1437-1442 .
    7. 冯易鑫 ,彭辉 ,罗威 . 聚类分析-神经网络-贝叶斯优化联合识别复合材料参数研究. 力学学报. 2024(11): 3333-3350 .
    8. 李宏宝. 公路工程中软土路基换填施工技术研究. 科学技术创新. 2023(12): 174-177 .
    9. 崔瑜瑜,吴立鹏,沈兴华,王兴召,秦亚琼,刘杰,卢正,吴磊. 粉质黏土基坑卸荷隆起变形的简化计算方法. 岩土力学. 2023(05): 1425-1434 .
    10. 曹阳健. 基于原位测试方法的土体变形参数研究. 砖瓦. 2023(06): 66-69 .
    11. 宋超,赵腾远,许领. 基于贝叶斯高斯过程回归与模型选择的岩石单轴抗压强度估计方法. 岩土工程学报. 2023(08): 1664-1673 . 本站查看
    12. 田波,王昊武,权磊,谢晋德,朱旭伟. 基于CPT试验的多年冻土区路表变形风险评价. 公路交通科技. 2023(09): 1-7+53 .
    13. 徐明,康雅晶,马斯斯,张鹤. 基于贝叶斯优化的XGBoost模型预测路基回弹模量. 公路交通科技. 2023(11): 51-60 .
    14. 赵腾远,宋超,谌文武,郭志谦,许领. 基于k-means聚类与高斯过程分类的土遗址裂隙病害发育等级概率预测. 石窟与土遗址保护研究. 2023(04): 75-86 .
    15. 王建强. 基于泊松曲线法的市政道路软土路基处理方法研究. 工程技术研究. 2022(20): 41-43 .

    Other cited types(2)

Catalog

    Article views (270) PDF downloads (148) Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return