Citation: | CAI Zheng-yin, WU Zhi-qiang, HUANG Ying-hao, CAO Yong-yong, WEI Yan-bing. Influence of water and salt contents on strength of frozen soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1580-1586. DOI: 10.11779/CJGE201409002 |
[1] |
TSYTOVICH H A. Mechanics of frozen soils[M]. 张长庆, 朱元林, 译. 北京: 科学出版社, 1985: 160-161. (TSYTOVICH H A. Mechanics of frozen soils[M]. ZHANG Chang-qing, ZHU Yuan-lin, trans. Beijing: Science Press, 1985: 160-161. (in Chinese))
|
[2] |
吴紫汪, 张家懿, 朱元林. 冻土的强度与破坏特征[C]// 中国地理学会冰川冻土学会论文选集. 兰州: 甘肃人民出版社, 1983: 275-280. (WU Zi-wang, ZHANG Jia-yi, ZHU Yuan-lin. Strength and failure characteristics of frozen soil[C]// Proceedings of the Second National Conference on Glaciology and Geocryology. Lanzhou: Gansu People’s Publishing House, 1983: 275-280. (in Chinese))
|
[3] |
ZHU Yuan-lin, CARBEE D L. Uniaxial compressive strength of frozen silt under constant deformation rates[J]. Cold Regions Science and Technology , 1984, 9(1): 3-15.
|
[4] |
陈湘生. 人工冻土瞬时无侧限抗压强度特征的试验研究[J]. 建井技术, 1991(6): 32-35. (CHEN Xiang-sheng. Experimental study on instantaneous uniaxial compressive strength characteristics of the artificial frozen soil[J]. Mine Construction Technology, 1991(6): 32-35. (in Chinese))
|
[5] |
李洪升, 杨海天, 常成, 等. 冻土抗压强度对应变速率敏感性分析[J]. 冰川冻土, 1995, 17(1): 40-47. (LI Hong-sheng, YANG Hai-tian, CHANG Cheng, et al. The strain rate sensitivity analysis of compression strength of frozen soil[J]. Journal of Glaciology and Geocryology, 1995, 17(1): 40-47. (in Chinese))
|
[6] |
马芹永. 人工冻土单轴抗拉、抗压强度的试验研究[J]. 岩土力学, 1996, 17(3): 76-81. (MA Qin-yong. Tensile strength , uniaxial compressive strength test on artificially frozen soils[J]. Rock and Soil Mechanics, 1996, 17(3): 76-81. (in Chinese))
|
[7] |
马小杰, 张建明, 常小晓, 等. 高温-高含冰量冻结黏土强度试验研究[J]. 岩土力学, 2008, 29(9): 2498-2502. (MA Xiao-jie, ZHANG Jian-ming, CHANG Xiao-xiao, et al. Experimental research on strength of warm and ice-rich frozen clays[J]. Rock and Soil Mechanics, 2008, 29(9): 2498-2502. (in Chinese))
|
[8] |
王春雷, 谢强, 姜崇喜, 等. 青藏铁路冻区盐渍土热特性及力学性能分析[J].岩土力学, 2009, 30(3): 836-839. (WANG Chun-lei, XIE Qiang, JIANG Chong-xi, et al. Analysis of thermal characteristics and mechanical properties of salty soil in frozen area of Qinghai-Tibet Railway[J]. Rock and Soil Mechanics, 2009, 30(3): 836-839. (in Chinese))
|
[9] |
贺俊, 杨平, 董朝文. 基于 BP 神经网络冻土强度预测模型研究[J]. 路基工程, 2011(3): 54-57. (HE Jun, YANG Ping, DONG Chao-wen. Study on prediction model of frozen soil strength based on back-propagation neural network[J]. Subgrade Engineering, 2011(3): 54-57. (in Chinese))
|
[10] |
吴旭平, 丁春林. 冻结重塑黏土损伤特性及影响因素分析[J]. 岩土工程学报, 2013, 35(11): 2038-2044. (WU Xu-ping, DING Chun-lin. Damage properties and influence factors of remolded frozen clay[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 2038-2044. (in Chinese))
|
[11] |
肖海斌. 人工冻土单轴抗压强度与温度和含水率的关系[J]. 岩土工程界, 2008, 4(11): 62-63. (XIAO Hai-bin. The relationship of uniaxial compressive strength of artificial frozen soil between water content and temperature[J]. Geotechnical Engineering World, 2008, 4(11): 62-63. (in Chinese))
|
[12] |
陈锦, 李东庆, 邴慧, 等. 含水率对冻结含盐粉土单轴抗压强度影响的试验研究[J]. 冰川冻土, 2012, 34(2): 441-445. (CHEN Jin, LI Dong-qing, BING Hui, et al. An experimental study of influence of water content on uniaxial compressive strength of frozen salty silt[J]. Journal of Glaciology and Geocryology, 2012, 34(2): 441-445. (in Chinese))
|
[13] |
尹珍珍, 陈有亮, 王鹏. 上海人工冻结黏土单轴无侧限抗压强度试验研究[J]. 岩土力学, 2012, 33(3): 788-792. (YIN Zhen-zhen, CHEN You-liang, WANG Peng. Uniaxial unconfined compressive strength test on artificially frozen clay in Shanghai[J]. Rock and Soil Mechanics, 2012, 33(3): 788-792. (in Chinese))
|
[14] |
XIAO XUAN G E, ZHAO HUI YANG, STILL B. Mechanical properties of naturally frozen silty soil for seismic design of pile foundations[C]// 10th International Symposium on Cold Regions Development. Reston VA: American Society of Civil Engineers, 2013: 215-227.
|
[15] |
SAYLES F H, CARBEE D L. Strength of frozen silt as a function of ice content and dry unit weight[J]. Engineering Geology, 1981, 18: 55-66.
|
[16] |
ROMAN L T. Effect of chemical composition of soils on the strength and deformability of frozen saline soils[J]. Soil Mechanics and Foundation Engineering, 1994, 31(6): 205-210.
|
[17] |
HIVON E, SEGO D C. Determination of unfrozen water content in saline permafrost using Time-Domain- Reflection(TDR)[C]// 5th Canadian Permafrost Conference. Quebec City, 1990: 257-262.
|
[18] |
BIGGAR K W, SEGO D C. Field pile load tests in saline permafrost I: analysis of results[J]. Canadian Geotechnical Journal, 1993, 30: 46-59.
|
[19] |
HELMET Hass, REGINE Jagow-Klaff, RUDOLF Wernecke. Influence of salinity on the strength of various frozen soils[C]// Orono ME: American Society of Civil Engineers. Orono, 2007.
|
[20] |
杨成松, 何平, 程国栋, 等. 含盐冻结粉质黏土单轴抗压强度试验研究[J]. 工程力学, 2006, 23(1): 144-148. (YANG Cheng-song, HE Ping, CHENG Guo-dong, et al. Uniaxial compressive strength study of frozen saline silt clay[J]. Engineering Mechanics, 2006, 23(1): 144-148. (in Chinese))
|
[21] |
马巍, 王大雁. 中国冻土力学研究 50 a 回顾与展望[J]. 岩土工程学报, 2012, 34(4): 625-640. (MA Wei, WANG Da-yan. Studies on frozen soil mechanics in China in past 50 years and their prospect[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 625-640. (in Chinese))
|
[22] |
王文华. 吉林省西部地区盐渍土水分迁移及冻胀特性研究[D]. 长春: 吉林大学, 2003. (WANG Wen-hua. A study on the moisture content migration and characteristics of frost heaving of saline soil in the western of Jilin province[D]. Changchun: Jilin University, 2003. (in Chinese))
|
[23] |
HIVON E G, SEGO D C. Strength of frozen saline soils[J]. Can Geotech J, 1995, 32: 336-354.
|
[24] |
冯 挺. 盐渍土的冻胀特性及其对渠道的危害[J]. 水利水电技术, 1989(6): 57-61. (FENG Ting. The frost heaving properties of saline soil and its damage to channels[J]. Water Resources and Hydropower Engineering, 1989(6): 57-61. (in Chinese))
|
[25] |
万旭升, 赖远明. 硫酸钠溶液和硫酸钠盐渍土的冻结温度及盐晶析出试验研究[J]. 岩土工程学报, 2013, 35(11): 2090-2095. (WAN Xu-sheng, LAI Yuan-ming. Experimental study on freezing temperature and salt crystal precipitation of sodium sulphate solution and sodium sulphate saline soil[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 2090-2095. (in Chinese))
|
[26] |
刘增利, 李洪升, 朱元林. 冻土单轴压缩损伤特征与细观损伤测试[J]. 大连理工大学学报, 2002, 42(2): 223-227. (LIU Zeng-li, LI Hong-sheng, ZHU Yuan-lin. Damage characteristics and micro-crack damage of frozen soil under uniaxial compression[J]. Journal of Dalian University of Technology, 2002, 42(2): 223-227. (in Chinese))
|
[27] |
李宁远, 李斌, 吴家慧. 硫酸盐渍土及膨胀特性研究[J]. 西安公路学院学报, 1989, 7(3): 81-90. (LI Ning-yuan, LI Bin, WU Jia-hui. Swelling characteristics of sulfate saline soil[J]. Journal of Xi'an Highway University, 1989, 7(3): 81-90. (in Chinese))
|
[28] |
MARCIN K. Modeling the phase change of salt dissolved in pore water: equilibrium and non-equilibrium approach[J]. Construction and Building Materials, 2010, 24(7): 1119-1128.
|
[1] | CHEN Zhenghan, MIAO Qiangqiang, GUO Nan, CHENG Xiang. On some problems of researches on soil-water retention curve[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 671-679. DOI: 10.11779/CJGE20220169 |
[2] | ZHANG Yu-wei, SONG Zhan-ping, XIE Yong-li. Prediction model for soil-water characteristic curve of loess under porosity change[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2017-2025. DOI: 10.11779/CJGE202211007 |
[3] | ZHANG Zhao, CHENG Jing-xuan, LIU Feng-yin, QI Ji-lin, CHAI Jun-rui, LI Hui-yong. Variable cross-sectional pore model to describe hydraulic conductivity and water retention behaviors of geotechnical materials[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1807-1816. DOI: 10.11779/CJGE202010005 |
[4] | MU Qing-yi, DANG Ying-jie, DONG Qi, LIAO Hong-jian, DONG Huan. Water-retention characteristics and collapsibity behaviors: comparison between intact and compacted loesses[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1496-1504. DOI: 10.11779/CJGE201908014 |
[5] | HUANG Wei, LIU Qing-bing, XIANG Wei, ZHANG Yun-long, WANG Zhen-hua, DAO Minh Huan. Water adsorption characteristics and water retention model for montmorillonite modified by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 121-130. DOI: 10.11779/CJGE201901013 |
[6] | ZHANG Zhao, LIU Feng-yin, QI Ji-lin, CHAI Jun-rui, LI Hui-yong, LI Jian-jun. Physical approach to predict water retention curves for unsaturated soils based on particle-size distribution[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 241-246. DOI: 10.11779/CJGE2018S1039 |
[7] | TAO Gao-liang, CHEN Yin, YUAN Bo, GAN Shi-chao, WU Xiao-kang, ZHU Xue-liang. Predicting soil-water retention curve based on NMR technology and fractal theory[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1466-1472. DOI: 10.11779/CJGE201808012 |
[8] | ZHANG Zhao, LIU Feng-yin, LI Rong-jian, CHAI Jun-rui, GU Yu. New approach to predict relative air permeability based on water retention curve for unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 280-285. DOI: 10.11779/CJGE2016S2046 |
[9] | QIN Bing, CHEN Zheng-han, SUN Fa-xin, FANG Xiang-wei, LIU Yue-miao, WANG Ju. Temperature effect on water retention curve under high suction and its modeling based on thermodynamics of sorption[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1877-1886. |
[10] | WANG Yu, WU Gang. Understanding and modelling soil-water characteristic curves[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(9): 1282-1290. |