• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CAI Zheng-yin, WU Zhi-qiang, HUANG Ying-hao, CAO Yong-yong, WEI Yan-bing. Influence of water and salt contents on strength of frozen soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1580-1586. DOI: 10.11779/CJGE201409002
Citation: CAI Zheng-yin, WU Zhi-qiang, HUANG Ying-hao, CAO Yong-yong, WEI Yan-bing. Influence of water and salt contents on strength of frozen soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1580-1586. DOI: 10.11779/CJGE201409002

Influence of water and salt contents on strength of frozen soils

More Information
  • Received Date: February 06, 2014
  • Published Date: September 21, 2014
  • In order to study the mechanical properties of frozen soils, a series of uniaxial compressive strength tests are conducted with water content of 9.5%, 11.5%, 13.5%, 15.5%, 17.5% and saturated conditions at -10℃, and with salt content of 0.2%, 1.6%, 3.0%, 4.4%, 5.8%, 7.2% and 8.6% at -15℃ respectively. According to the test results, the stress-strain relationship, uniaxial compressive strength and destruction type are strongly affected by the water and salt contents of the soils. The test results show that the uniaxial compressive strength increases with the increasing water and salt contents firstly, then it decreases rapidly after reaching its peak. The water content corresponding to the peak strength is 17.5% regardless of the salt content and dry density of the soils. But the salt content corresponding to the peak strength varies under different water contents: under the water content of 13.5%, the strength reaches its peak under the salt content of 4.4%; under the water content of 15.5% and 17.5%, the strength reaches its peak under the salt content of 5.8%.
  • [1]
    TSYTOVICH H A. Mechanics of frozen soils[M]. 张长庆, 朱元林, 译. 北京: 科学出版社, 1985: 160-161. (TSYTOVICH H A. Mechanics of frozen soils[M]. ZHANG Chang-qing, ZHU Yuan-lin, trans. Beijing: Science Press, 1985: 160-161. (in Chinese))
    [2]
    吴紫汪, 张家懿, 朱元林. 冻土的强度与破坏特征[C]// 中国地理学会冰川冻土学会论文选集. 兰州: 甘肃人民出版社, 1983: 275-280. (WU Zi-wang, ZHANG Jia-yi, ZHU Yuan-lin. Strength and failure characteristics of frozen soil[C]// Proceedings of the Second National Conference on Glaciology and Geocryology. Lanzhou: Gansu People’s Publishing House, 1983: 275-280. (in Chinese))
    [3]
    ZHU Yuan-lin, CARBEE D L. Uniaxial compressive strength of frozen silt under constant deformation rates[J]. Cold Regions Science and Technology , 1984, 9(1): 3-15.
    [4]
    陈湘生. 人工冻土瞬时无侧限抗压强度特征的试验研究[J]. 建井技术, 1991(6): 32-35. (CHEN Xiang-sheng. Experimental study on instantaneous uniaxial compressive strength characteristics of the artificial frozen soil[J]. Mine Construction Technology, 1991(6): 32-35. (in Chinese))
    [5]
    李洪升, 杨海天, 常成, 等. 冻土抗压强度对应变速率敏感性分析[J]. 冰川冻土, 1995, 17(1): 40-47. (LI Hong-sheng, YANG Hai-tian, CHANG Cheng, et al. The strain rate sensitivity analysis of compression strength of frozen soil[J]. Journal of Glaciology and Geocryology, 1995, 17(1): 40-47. (in Chinese))
    [6]
    马芹永. 人工冻土单轴抗拉、抗压强度的试验研究[J]. 岩土力学, 1996, 17(3): 76-81. (MA Qin-yong. Tensile strength , uniaxial compressive strength test on artificially frozen soils[J]. Rock and Soil Mechanics, 1996, 17(3): 76-81. (in Chinese))
    [7]
    马小杰, 张建明, 常小晓, 等. 高温-高含冰量冻结黏土强度试验研究[J]. 岩土力学, 2008, 29(9): 2498-2502. (MA Xiao-jie, ZHANG Jian-ming, CHANG Xiao-xiao, et al. Experimental research on strength of warm and ice-rich frozen clays[J]. Rock and Soil Mechanics, 2008, 29(9): 2498-2502. (in Chinese))
    [8]
    王春雷, 谢强, 姜崇喜, 等. 青藏铁路冻区盐渍土热特性及力学性能分析[J].岩土力学, 2009, 30(3): 836-839. (WANG Chun-lei, XIE Qiang, JIANG Chong-xi, et al. Analysis of thermal characteristics and mechanical properties of salty soil in frozen area of Qinghai-Tibet Railway[J]. Rock and Soil Mechanics, 2009, 30(3): 836-839. (in Chinese))
    [9]
    贺俊, 杨平, 董朝文. 基于 BP 神经网络冻土强度预测模型研究[J]. 路基工程, 2011(3): 54-57. (HE Jun, YANG Ping, DONG Chao-wen. Study on prediction model of frozen soil strength based on back-propagation neural network[J]. Subgrade Engineering, 2011(3): 54-57. (in Chinese))
    [10]
    吴旭平, 丁春林. 冻结重塑黏土损伤特性及影响因素分析[J]. 岩土工程学报, 2013, 35(11): 2038-2044. (WU Xu-ping, DING Chun-lin. Damage properties and influence factors of remolded frozen clay[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 2038-2044. (in Chinese))
    [11]
    肖海斌. 人工冻土单轴抗压强度与温度和含水率的关系[J]. 岩土工程界, 2008, 4(11): 62-63. (XIAO Hai-bin. The relationship of uniaxial compressive strength of artificial frozen soil between water content and temperature[J]. Geotechnical Engineering World, 2008, 4(11): 62-63. (in Chinese))
    [12]
    陈锦, 李东庆, 邴慧, 等. 含水率对冻结含盐粉土单轴抗压强度影响的试验研究[J]. 冰川冻土, 2012, 34(2): 441-445. (CHEN Jin, LI Dong-qing, BING Hui, et al. An experimental study of influence of water content on uniaxial compressive strength of frozen salty silt[J]. Journal of Glaciology and Geocryology, 2012, 34(2): 441-445. (in Chinese))
    [13]
    尹珍珍, 陈有亮, 王鹏. 上海人工冻结黏土单轴无侧限抗压强度试验研究[J]. 岩土力学, 2012, 33(3): 788-792. (YIN Zhen-zhen, CHEN You-liang, WANG Peng. Uniaxial unconfined compressive strength test on artificially frozen clay in Shanghai[J]. Rock and Soil Mechanics, 2012, 33(3): 788-792. (in Chinese))
    [14]
    XIAO XUAN G E, ZHAO HUI YANG, STILL B. Mechanical properties of naturally frozen silty soil for seismic design of pile foundations[C]// 10th International Symposium on Cold Regions Development. Reston VA: American Society of Civil Engineers, 2013: 215-227.
    [15]
    SAYLES F H, CARBEE D L. Strength of frozen silt as a function of ice content and dry unit weight[J]. Engineering Geology, 1981, 18: 55-66.
    [16]
    ROMAN L T. Effect of chemical composition of soils on the strength and deformability of frozen saline soils[J]. Soil Mechanics and Foundation Engineering, 1994, 31(6): 205-210.
    [17]
    HIVON E, SEGO D C. Determination of unfrozen water content in saline permafrost using Time-Domain- Reflection(TDR)[C]// 5th Canadian Permafrost Conference. Quebec City, 1990: 257-262.
    [18]
    BIGGAR K W, SEGO D C. Field pile load tests in saline permafrost I: analysis of results[J]. Canadian Geotechnical Journal, 1993, 30: 46-59.
    [19]
    HELMET Hass, REGINE Jagow-Klaff, RUDOLF Wernecke. Influence of salinity on the strength of various frozen soils[C]// Orono ME: American Society of Civil Engineers. Orono, 2007.
    [20]
    杨成松, 何平, 程国栋, 等. 含盐冻结粉质黏土单轴抗压强度试验研究[J]. 工程力学, 2006, 23(1): 144-148. (YANG Cheng-song, HE Ping, CHENG Guo-dong, et al. Uniaxial compressive strength study of frozen saline silt clay[J]. Engineering Mechanics, 2006, 23(1): 144-148. (in Chinese))
    [21]
    马巍, 王大雁. 中国冻土力学研究 50 a 回顾与展望[J]. 岩土工程学报, 2012, 34(4): 625-640. (MA Wei, WANG Da-yan. Studies on frozen soil mechanics in China in past 50 years and their prospect[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 625-640. (in Chinese))
    [22]
    王文华. 吉林省西部地区盐渍土水分迁移及冻胀特性研究[D]. 长春: 吉林大学, 2003. (WANG Wen-hua. A study on the moisture content migration and characteristics of frost heaving of saline soil in the western of Jilin province[D]. Changchun: Jilin University, 2003. (in Chinese))
    [23]
    HIVON E G, SEGO D C. Strength of frozen saline soils[J]. Can Geotech J, 1995, 32: 336-354.
    [24]
    冯 挺. 盐渍土的冻胀特性及其对渠道的危害[J]. 水利水电技术, 1989(6): 57-61. (FENG Ting. The frost heaving properties of saline soil and its damage to channels[J]. Water Resources and Hydropower Engineering, 1989(6): 57-61. (in Chinese))
    [25]
    万旭升, 赖远明. 硫酸钠溶液和硫酸钠盐渍土的冻结温度及盐晶析出试验研究[J]. 岩土工程学报, 2013, 35(11): 2090-2095. (WAN Xu-sheng, LAI Yuan-ming. Experimental study on freezing temperature and salt crystal precipitation of sodium sulphate solution and sodium sulphate saline soil[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 2090-2095. (in Chinese))
    [26]
    刘增利, 李洪升, 朱元林. 冻土单轴压缩损伤特征与细观损伤测试[J]. 大连理工大学学报, 2002, 42(2): 223-227. (LIU Zeng-li, LI Hong-sheng, ZHU Yuan-lin. Damage characteristics and micro-crack damage of frozen soil under uniaxial compression[J]. Journal of Dalian University of Technology, 2002, 42(2): 223-227. (in Chinese))
    [27]
    李宁远, 李斌, 吴家慧. 硫酸盐渍土及膨胀特性研究[J]. 西安公路学院学报, 1989, 7(3): 81-90. (LI Ning-yuan, LI Bin, WU Jia-hui. Swelling characteristics of sulfate saline soil[J]. Journal of Xi'an Highway University, 1989, 7(3): 81-90. (in Chinese))
    [28]
    MARCIN K. Modeling the phase change of salt dissolved in pore water: equilibrium and non-equilibrium approach[J]. Construction and Building Materials, 2010, 24(7): 1119-1128.
  • Related Articles

    [1]CHEN Zhenghan, MIAO Qiangqiang, GUO Nan, CHENG Xiang. On some problems of researches on soil-water retention curve[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 671-679. DOI: 10.11779/CJGE20220169
    [2]ZHANG Yu-wei, SONG Zhan-ping, XIE Yong-li. Prediction model for soil-water characteristic curve of loess under porosity change[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2017-2025. DOI: 10.11779/CJGE202211007
    [3]ZHANG Zhao, CHENG Jing-xuan, LIU Feng-yin, QI Ji-lin, CHAI Jun-rui, LI Hui-yong. Variable cross-sectional pore model to describe hydraulic conductivity and water retention behaviors of geotechnical materials[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1807-1816. DOI: 10.11779/CJGE202010005
    [4]MU Qing-yi, DANG Ying-jie, DONG Qi, LIAO Hong-jian, DONG Huan. Water-retention characteristics and collapsibity behaviors: comparison between intact and compacted loesses[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1496-1504. DOI: 10.11779/CJGE201908014
    [5]HUANG Wei, LIU Qing-bing, XIANG Wei, ZHANG Yun-long, WANG Zhen-hua, DAO Minh Huan. Water adsorption characteristics and water retention model for montmorillonite modified by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 121-130. DOI: 10.11779/CJGE201901013
    [6]ZHANG Zhao, LIU Feng-yin, QI Ji-lin, CHAI Jun-rui, LI Hui-yong, LI Jian-jun. Physical approach to predict water retention curves for unsaturated soils based on particle-size distribution[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 241-246. DOI: 10.11779/CJGE2018S1039
    [7]TAO Gao-liang, CHEN Yin, YUAN Bo, GAN Shi-chao, WU Xiao-kang, ZHU Xue-liang. Predicting soil-water retention curve based on NMR technology and fractal theory[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1466-1472. DOI: 10.11779/CJGE201808012
    [8]ZHANG Zhao, LIU Feng-yin, LI Rong-jian, CHAI Jun-rui, GU Yu. New approach to predict relative air permeability based on water retention curve for unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 280-285. DOI: 10.11779/CJGE2016S2046
    [9]QIN Bing, CHEN Zheng-han, SUN Fa-xin, FANG Xiang-wei, LIU Yue-miao, WANG Ju. Temperature effect on water retention curve under high suction and its modeling based on thermodynamics of sorption[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1877-1886.
    [10]WANG Yu, WU Gang. Understanding and modelling soil-water characteristic curves[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(9): 1282-1290.

Catalog

    Article views (484) PDF downloads (354) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return