Citation: | ZHANG Zhao, LIU Feng-yin, LI Rong-jian, CHAI Jun-rui, GU Yu. New approach to predict relative air permeability based on water retention curve for unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 280-285. DOI: 10.11779/CJGE2016S2046 |
[1] |
叶为民, 钱丽鑫, 白 云, 等. 由土-水特征曲线预测上海非饱和软土渗透系数[J]. 岩土工程学报, 2005, 27(11): 1262-1265. (YE Wei-min, QIAN Li-xin, BAI Yun, et al. Predicting coefficient of permeability from soil-water characteristic curve for Shanghai soft soil[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(11): 1262-1265. (in Chinese))
|
[2] |
刘奉银, 张 昭, 周 冬. 湿度和密度双变化条件下的非饱和黄土渗气渗水函数[J]. 岩石力学与工程学报, 2010, 29(9): 1907-1914. (LIU Feng-yin, ZHANG Zhao, ZHOU Dong. Density-saturation-dependent air-water permeability function of unsaturated loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(9): 1907-1914. (in Chinese))
|
[3] |
姚志华, 陈正汉, 黄雪峰, 等. 非饱和Q 3 黄土渗气特性试验研究[J]. 岩石力学与工程学报, 2012, 31(6): 1264-1273. (YAO Zhi-hua, CHEN Zheng-han, HUANG Xue-feng, et al. Experimental research on gas permeability of unsaturated Q 3 loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(6): 1264-1273. (in Chinese))
|
[4] |
TULI A, HOPMANS J W. Effect of degree of fluid saturation on transport coefficient indisturbed soils[J]. European Journal of Soil Science, 2004, 55(1): 147-164.
|
[5] |
YANG Z, MOHANTY B P. Effective parametrizations of three nonwetting phase relative permeability models[J]. Water Resource Research, 2015, 55(8): 6520-6531.
|
[6] |
KUANG X, JIAO J J. A new model for predicting relative nonwetting phase permeability from soil water retention curves[J]. Water Resource Research, 2011, 47(8): 427-438.
|
[7] |
KOSUGI K. Three-parameter lognormal distribution model for soil water retention[J]. Water Resource Research, 1994, 30(4): 891-901.
|
[8] |
VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898.
|
[9] |
MUALEM Y. A new model for predicting the hydraulic conductivity of unsaturated porous media[J]. Water Resources Research, 1976, 12(3): 513-522.
|
[10] |
BROOKS R H, COREY. Hydraulic properties of porous media[R]. Fort Collins: Colorado State University, 1964.
|
[11] |
MOLDRUP P, OLESEN T, KOMATSU T, et al. Tortuosity, diffusivity, and permeability in the soil liquid and gaseous phases[J]. Soil Science Society of America Journal, 2001, 65(3): 613-623.
|
[12] |
ASSOULINE S. A model for soil relative hydraulic conductivity based on the water retention characteristic curve[J]. Water Resources Research, 2001, 37(2): 265-271.
|
[13] |
徐永福, 黄寅春. 分形理论在研究非饱和土力学性质中的应用[J]. 岩土工程学报, 2006, 28(5): 635-638. (XU Yong-fu, HUANG Yin-chun. Fractal-textured soils and their unsaturated mechanical properties[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(5): 635-638. (in Chinese))
|
[14] |
HU R, CHEN Y F, LIU H H, et al. A water retention curve and unsaturated hydraulic conductivity model for deformable soils: consideration of the change in pore size distribution[J]. Géotechnique, 2013, 63(16): 1389-1405.
|
[15] |
HU R, CHEN Y F, LIU H H, et al. A relative permeability model for deformable soils and its impact on coupled unsaturated flow and elasto-plastic deformation processes[J]. Science China-Technological Sciences, 2015, 58(11): 1971-1982.
|
[16] |
HUNT A G. Continuum percolation theory for saturation dependence of air permeability[J]. Vadose Zone Journal, 2005, 4(4): 134-138.
|
[17] |
FREDLUND M D, WILSON G W, FREDLUND D G. Use of the grain-size distribution for estimation of the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 2002, 39(5): 1103-1117.
|
[18] |
ASSOULINE S, TESSIER D, BRUAND A. A conceptual model of the soil water retention curve[J]. Water Resources Research, 1998, 34(2): 223-231.
|
[19] |
ASSOULINE S. On the relationships between the pore size distribution index and characteristics of the soil hydraulic functions[J]. Water Resources Research, 2005, 41(7): 301-320.
|
[20] |
ASSOULINE S. Modeling the relationship between soil bulk density and the water retention curve[J]. Vadose Zone Journal, 2006, 5(2): 554-563.
|
[21] |
TULI A, HOPMANS J W, ROLSTON D E, et al. Comparison of air and water permeability between disturbed and undisturbed soils[J]. Soil Science Society of America Journal, 2005, 69(5): 1361-1371.
|
[22] |
OR D, WRAITH J M. Temperature effects on soil bulk dielectric permittivity measured by time domain reflectometry: a physical model[J]. Water Resources Research, 1999, 32(2): 371-383.
|
[23] |
TULLER M, OR D. Water films and scaling of soil characteristic curves at low water contents[J]. Water Resources Research, 2005, 41(9): 319-335.
|
[24] |
TOUMA J, VAUCLIN M. Experimental and numerical analysis of two-phase infiltration in a partially saturated soil[J]. Transport in Porous Media, 1986, 1(1): 27-55.
|
[25] |
TULLER M, OR D. Hydraulic conductivity of variably saturated porous media: Film and corner flow in angular pore space[J]. Water Resources Research, 2001, 37(5): 1257-1276.
|
[26] |
CHAN T P, GOVINDARAJU R S. Estimating soil water retention curve from particle-size distribution data based on polydisperse sphere systems[J]. Vadose Zone Journal, 2004, 3(4): 1443-1454.
|
1. |
李明昊,李皋,张毅,杨旭,李红涛,冯佳歆,宿腾跃. 位移约束和温度耦合下致密砂岩热诱导微裂纹发育规律研究. 岩石力学与工程学报. 2025(01): 174-184 .
![]() | |
2. |
黄彦华,张坤博,杨圣奇,田文岭,朱振南,印昊,李明旭. 高温后花岗岩微观特征及其对强度影响规律研究. 岩石力学与工程学报. 2025(02): 359-372 .
![]() | |
3. |
李明耀,李绍金,彭磊,丁宇飞,左建平. 基于相场法的花岗岩弹塑性损伤模型及其细观力学行为研究. 岩石力学与工程学报. 2024(03): 611-622 .
![]() | |
4. |
黄彦华,陶然,韩媛媛,陈笑,罗一鸣,武世岩. 温度对不同孔隙砂岩Ⅰ型断裂韧度影响的试验研究. 采矿与安全工程学报. 2024(02): 430-436 .
![]() | |
5. |
于洪丹,卢琛,陈卫忠,黄嘉玮,李洪辉. 塔木素黏土岩蠕变特性试验与理论研究. 岩石力学与工程学报. 2024(S1): 3578-3585 .
![]() | |
6. |
杨文东,王柄淇,姚军,井文君,张祥. 三轴压缩下实时高温和热处理后碳酸盐岩力学特性的试验研究. 岩石力学与工程学报. 2024(06): 1347-1358 .
![]() | |
7. |
闫程锦,郤保平. 基于颗粒流GBM模型的花岗岩热力损伤特性研究. 水利水电技术(中英文). 2024(05): 170-180 .
![]() | |
8. |
赵奎,李从明,曾鹏,熊良锋,龚囱,黄震. 持续高温作用下花岗岩特征应力及声发射特征试验研究. 岩石力学与工程学报. 2024(07): 1580-1592 .
![]() | |
9. |
贾蓬,钱一锦,毛松泽,徐雪桐,卢佳亮. 晶粒尺寸对花岗岩动态劈裂力学特性及断面粗糙度影响的试验研究. 应用基础与工程科学学报. 2024(05): 1449-1462 .
![]() | |
10. |
夏开宗,刘夏临,林英书,张飞,司志伟,孙朝燚. 基于岩体波速的地下洞室围岩损伤区岩体力学参数取值方法及工程应用. 岩石力学与工程学报. 2024(10): 2414-2429 .
![]() | |
11. |
黄麟淇,刘茂林,王钊炜,郭懿德,司雪峰,李夕兵,李超. 温度影响和真三轴加载下深部圆形隧洞破坏研究(英文). Journal of Central South University. 2024(09): 3119-3141 .
![]() | |
12. |
赵奎,李从明,曾鹏,熊良锋,龚囱,黄震. 热损伤花岗岩能量演化机制及损伤本构模型. 金属矿山. 2024(11): 45-54 .
![]() | |
13. |
黄彦华,陶然,陈笑,罗一鸣,韩媛媛. 高温后花岗岩断裂特性及热裂纹演化规律研究. 岩土工程学报. 2023(04): 739-747 .
![]() | |
14. |
张涛,蔚立元,苏海健,高亚楠,贺虎,魏江波. 基于多级力链网络分析的花岗岩压缩特性的矿物尺寸效应研究. 岩石力学与工程学报. 2023(08): 1988-2003 .
![]() | |
15. |
李卫,苏海健,蔚立元,刘日成,陈广印. 高温热处理砂岩Ⅰ-Ⅲ混合断裂特性试验研究. 采矿与安全工程学报. 2023(06): 1281-1289 .
![]() | |
16. |
顾冬,马力,罗坤,孙云儒. 水利枢纽工程场地基岩高温三轴压缩渗透力学试验研究. 水利科技与经济. 2022(02): 74-78 .
![]() | |
17. |
张涛,蔚立元,鞠明和,李明,苏海健,季浩奇. 基于PFC3D-GBM的晶体–单元体尺寸比对花岗岩动态拉伸特性影响分析. 岩石力学与工程学报. 2022(03): 468-478 .
![]() | |
18. |
李博宇,彭文祥,王李昌,隆威. 温度与化学作用下岩石物理力学性质研究进展. 地质装备. 2022(02): 33-37 .
![]() | |
19. |
刘磊,李睿,秦浩,刘洋. 高温后深部矽卡岩动力学特性及微观破坏机制研究. 岩土工程学报. 2022(06): 1166-1174 .
![]() | |
20. |
詹懿德,汪发祥,佘恬钰,沈佳轶,吕庆. 考虑围压效应的块状节理岩体变形破坏数值模拟. 水利水运工程学报. 2022(04): 70-76 .
![]() | |
21. |
李明耀,彭磊,左建平,王智敏,李绍金,薛喜仁. 基于DIP-FFT数值方法的花岗岩多尺度力学特性研究. 岩石力学与工程学报. 2022(11): 2254-2267 .
![]() | |
22. |
王春,熊宏威,舒荣华,薛文越,胡慢谷,张攀龙,雷彬彬. 高温处理后含铜矽卡岩的动态力学特性及损伤破碎特征. 中国有色金属学报. 2022(09): 2801-2818 .
![]() | |
23. |
梁忠豪,秦楠,孙嘉彬,葛强. 高温作用后黄砂岩三轴压缩及细观破裂机制. 科学技术与工程. 2021(24): 10430-10439 .
![]() | |
24. |
郝宪杰,刘继山,魏英楠,陈泽宇,靳多祥,潘光耀,张谦. 2000m超深煤系储层力学及声发射特征的围压效应. 中南大学学报(自然科学版). 2021(08): 2611-2621 .
![]() | |
25. |
徐文龙,徐鼎平,柳秀洋. 高温热损伤对花岗岩单轴破坏模式和强度的影响研究. 皖西学院学报. 2021(05): 94-99 .
![]() |