• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Zhao, LIU Feng-yin, LI Rong-jian, CHAI Jun-rui, GU Yu. New approach to predict relative air permeability based on water retention curve for unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 280-285. DOI: 10.11779/CJGE2016S2046
Citation: ZHANG Zhao, LIU Feng-yin, LI Rong-jian, CHAI Jun-rui, GU Yu. New approach to predict relative air permeability based on water retention curve for unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 280-285. DOI: 10.11779/CJGE2016S2046

New approach to predict relative air permeability based on water retention curve for unsaturated soils

More Information
  • Received Date: May 18, 2016
  • Published Date: October 19, 2016
  • Accurate modeling of water and air flow in unsaturated soils requires the reasonable definition of water retention behavior and the permeability behavior of water and air in the pores. By means of the approach developed previously to estimate the relative water permeability, a new approach to predict the relative air permeability is proposed based on the water retention curve. The power value in the approach can be considered as a decreasing exponential function of the coefficient characterizing the pore-size distribution of the soil and derived from its water retention curve. The model is calibrated using the data from 22 samples and validated using the data from 5 samples ranging from sand to silty clay loam in the existing literatures. The proposed approach is superior to the available alternative approaches for describing the evolution of relative air permeability with effective air saturation.
  • [1]
    叶为民, 钱丽鑫, 白 云, 等. 由土-水特征曲线预测上海非饱和软土渗透系数[J]. 岩土工程学报, 2005, 27(11): 1262-1265. (YE Wei-min, QIAN Li-xin, BAI Yun, et al. Predicting coefficient of permeability from soil-water characteristic curve for Shanghai soft soil[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(11): 1262-1265. (in Chinese))
    [2]
    刘奉银, 张 昭, 周 冬. 湿度和密度双变化条件下的非饱和黄土渗气渗水函数[J]. 岩石力学与工程学报, 2010, 29(9): 1907-1914. (LIU Feng-yin, ZHANG Zhao, ZHOU Dong. Density-saturation-dependent air-water permeability function of unsaturated loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(9): 1907-1914. (in Chinese))
    [3]
    姚志华, 陈正汉, 黄雪峰, 等. 非饱和Q 3 黄土渗气特性试验研究[J]. 岩石力学与工程学报, 2012, 31(6): 1264-1273. (YAO Zhi-hua, CHEN Zheng-han, HUANG Xue-feng, et al. Experimental research on gas permeability of unsaturated Q 3 loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(6): 1264-1273. (in Chinese))
    [4]
    TULI A, HOPMANS J W. Effect of degree of fluid saturation on transport coefficient indisturbed soils[J]. European Journal of Soil Science, 2004, 55(1): 147-164.
    [5]
    YANG Z, MOHANTY B P. Effective parametrizations of three nonwetting phase relative permeability models[J]. Water Resource Research, 2015, 55(8): 6520-6531.
    [6]
    KUANG X, JIAO J J. A new model for predicting relative nonwetting phase permeability from soil water retention curves[J]. Water Resource Research, 2011, 47(8): 427-438.
    [7]
    KOSUGI K. Three-parameter lognormal distribution model for soil water retention[J]. Water Resource Research, 1994, 30(4): 891-901.
    [8]
    VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898.
    [9]
    MUALEM Y. A new model for predicting the hydraulic conductivity of unsaturated porous media[J]. Water Resources Research, 1976, 12(3): 513-522.
    [10]
    BROOKS R H, COREY. Hydraulic properties of porous media[R]. Fort Collins: Colorado State University, 1964.
    [11]
    MOLDRUP P, OLESEN T, KOMATSU T, et al. Tortuosity, diffusivity, and permeability in the soil liquid and gaseous phases[J]. Soil Science Society of America Journal, 2001, 65(3): 613-623.
    [12]
    ASSOULINE S. A model for soil relative hydraulic conductivity based on the water retention characteristic curve[J]. Water Resources Research, 2001, 37(2): 265-271.
    [13]
    徐永福, 黄寅春. 分形理论在研究非饱和土力学性质中的应用[J]. 岩土工程学报, 2006, 28(5): 635-638. (XU Yong-fu, HUANG Yin-chun. Fractal-textured soils and their unsaturated mechanical properties[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(5): 635-638. (in Chinese))
    [14]
    HU R, CHEN Y F, LIU H H, et al. A water retention curve and unsaturated hydraulic conductivity model for deformable soils: consideration of the change in pore size distribution[J]. Géotechnique, 2013, 63(16): 1389-1405.
    [15]
    HU R, CHEN Y F, LIU H H, et al. A relative permeability model for deformable soils and its impact on coupled unsaturated flow and elasto-plastic deformation processes[J]. Science China-Technological Sciences, 2015, 58(11): 1971-1982.
    [16]
    HUNT A G. Continuum percolation theory for saturation dependence of air permeability[J]. Vadose Zone Journal, 2005, 4(4): 134-138.
    [17]
    FREDLUND M D, WILSON G W, FREDLUND D G. Use of the grain-size distribution for estimation of the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 2002, 39(5): 1103-1117.
    [18]
    ASSOULINE S, TESSIER D, BRUAND A. A conceptual model of the soil water retention curve[J]. Water Resources Research, 1998, 34(2): 223-231.
    [19]
    ASSOULINE S. On the relationships between the pore size distribution index and characteristics of the soil hydraulic functions[J]. Water Resources Research, 2005, 41(7): 301-320.
    [20]
    ASSOULINE S. Modeling the relationship between soil bulk density and the water retention curve[J]. Vadose Zone Journal, 2006, 5(2): 554-563.
    [21]
    TULI A, HOPMANS J W, ROLSTON D E, et al. Comparison of air and water permeability between disturbed and undisturbed soils[J]. Soil Science Society of America Journal, 2005, 69(5): 1361-1371.
    [22]
    OR D, WRAITH J M. Temperature effects on soil bulk dielectric permittivity measured by time domain reflectometry: a physical model[J]. Water Resources Research, 1999, 32(2): 371-383.
    [23]
    TULLER M, OR D. Water films and scaling of soil characteristic curves at low water contents[J]. Water Resources Research, 2005, 41(9): 319-335.
    [24]
    TOUMA J, VAUCLIN M. Experimental and numerical analysis of two-phase infiltration in a partially saturated soil[J]. Transport in Porous Media, 1986, 1(1): 27-55.
    [25]
    TULLER M, OR D. Hydraulic conductivity of variably saturated porous media: Film and corner flow in angular pore space[J]. Water Resources Research, 2001, 37(5): 1257-1276.
    [26]
    CHAN T P, GOVINDARAJU R S. Estimating soil water retention curve from particle-size distribution data based on polydisperse sphere systems[J]. Vadose Zone Journal, 2004, 3(4): 1443-1454.
  • Related Articles

    [1]XIAO Zhiyong, SUN Xiaoxiang, WANG Gang, WANG Mingzhen, JIA Wenwen, JIANG Feng, ZHENG Chengcheng. Model for non-equilibrium evolution coal permeability of whole process under influences of gas pressure difference[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 355-364. DOI: 10.11779/CJGE20231012
    [2]Visual experimental study on the coupling process of seepage-erosion in rough fracture and the evolution of permeability[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240363
    [3]CHENG Xian-zhen, CHEN Lian-jun, LUAN Heng-jie, WHANG Chun-guang, JIANG Yu-jing. Influences of softening behaviour of coal on evolution of its permeability by considering matrix-fracture interactions[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1890-1898. DOI: 10.11779/CJGE202210015
    [4]RONG Teng-long, LIU Ke-liu, ZHOU Hong-wei, GUAN Can, CHEN Yan, REN Wei-guang. Permeability evolution of deep coal under mining stress[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1106-1114. DOI: 10.11779/CJGE202206015
    [5]XIAO Zhi-yong, WANG Chang-sheng, WANG Gang, JIANG Yu-jing, YU Jun-hong. Influences of matrix-fracture interaction on permeability evolution: considering matrix deformation and stress correction[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2209-2219. DOI: 10.11779/CJGE202112007
    [6]LIU Wu, ZHANG Zhen-hua, YE Xiao-dong, CHEN Yi-feng. Multi-scale permeability evolution model for layered rocks[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 68-72. DOI: 10.11779/CJGE2018S2014
    [7]LIU Xian-shan, WANG Ke, XU Ming. Permeability evolution of low-permeability reservoir sandstone considering hydraulic-mechanical-damage coupling effect during gradual fracturing process[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1584-1592. DOI: 10.11779/CJGE201809003
    [8]CHEN Shi-wan, YANG Chun-he, LIU Peng-jun, WEI Xiang. Evolution of cracks and permeability of granites suffering from different thermal damages[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1493-1500. DOI: 10.11779/CJGE201708017
    [9]KONG Qian, WANG Huan-ling, XU Wei-ya. Experimental study on permeability and porosity evolution of sandstone under cyclic loading and unloading[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1893-1900. DOI: 10.11779/CJGE201510018
    [10]Li Shiping, Li Yushou, Wu Zhenye. The Permeability-Strain Equations Relating to Complete Stress-strain Path of the Rock[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(2): 13-19.

Catalog

    Article views (318) PDF downloads (243) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return