Citation: | ZHANG Zhao, LIU Feng-yin, LI Rong-jian, CHAI Jun-rui, GU Yu. New approach to predict relative air permeability based on water retention curve for unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 280-285. DOI: 10.11779/CJGE2016S2046 |
[1] |
叶为民, 钱丽鑫, 白 云, 等. 由土-水特征曲线预测上海非饱和软土渗透系数[J]. 岩土工程学报, 2005, 27(11): 1262-1265. (YE Wei-min, QIAN Li-xin, BAI Yun, et al. Predicting coefficient of permeability from soil-water characteristic curve for Shanghai soft soil[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(11): 1262-1265. (in Chinese))
|
[2] |
刘奉银, 张 昭, 周 冬. 湿度和密度双变化条件下的非饱和黄土渗气渗水函数[J]. 岩石力学与工程学报, 2010, 29(9): 1907-1914. (LIU Feng-yin, ZHANG Zhao, ZHOU Dong. Density-saturation-dependent air-water permeability function of unsaturated loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(9): 1907-1914. (in Chinese))
|
[3] |
姚志华, 陈正汉, 黄雪峰, 等. 非饱和Q 3 黄土渗气特性试验研究[J]. 岩石力学与工程学报, 2012, 31(6): 1264-1273. (YAO Zhi-hua, CHEN Zheng-han, HUANG Xue-feng, et al. Experimental research on gas permeability of unsaturated Q 3 loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(6): 1264-1273. (in Chinese))
|
[4] |
TULI A, HOPMANS J W. Effect of degree of fluid saturation on transport coefficient indisturbed soils[J]. European Journal of Soil Science, 2004, 55(1): 147-164.
|
[5] |
YANG Z, MOHANTY B P. Effective parametrizations of three nonwetting phase relative permeability models[J]. Water Resource Research, 2015, 55(8): 6520-6531.
|
[6] |
KUANG X, JIAO J J. A new model for predicting relative nonwetting phase permeability from soil water retention curves[J]. Water Resource Research, 2011, 47(8): 427-438.
|
[7] |
KOSUGI K. Three-parameter lognormal distribution model for soil water retention[J]. Water Resource Research, 1994, 30(4): 891-901.
|
[8] |
VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898.
|
[9] |
MUALEM Y. A new model for predicting the hydraulic conductivity of unsaturated porous media[J]. Water Resources Research, 1976, 12(3): 513-522.
|
[10] |
BROOKS R H, COREY. Hydraulic properties of porous media[R]. Fort Collins: Colorado State University, 1964.
|
[11] |
MOLDRUP P, OLESEN T, KOMATSU T, et al. Tortuosity, diffusivity, and permeability in the soil liquid and gaseous phases[J]. Soil Science Society of America Journal, 2001, 65(3): 613-623.
|
[12] |
ASSOULINE S. A model for soil relative hydraulic conductivity based on the water retention characteristic curve[J]. Water Resources Research, 2001, 37(2): 265-271.
|
[13] |
徐永福, 黄寅春. 分形理论在研究非饱和土力学性质中的应用[J]. 岩土工程学报, 2006, 28(5): 635-638. (XU Yong-fu, HUANG Yin-chun. Fractal-textured soils and their unsaturated mechanical properties[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(5): 635-638. (in Chinese))
|
[14] |
HU R, CHEN Y F, LIU H H, et al. A water retention curve and unsaturated hydraulic conductivity model for deformable soils: consideration of the change in pore size distribution[J]. Géotechnique, 2013, 63(16): 1389-1405.
|
[15] |
HU R, CHEN Y F, LIU H H, et al. A relative permeability model for deformable soils and its impact on coupled unsaturated flow and elasto-plastic deformation processes[J]. Science China-Technological Sciences, 2015, 58(11): 1971-1982.
|
[16] |
HUNT A G. Continuum percolation theory for saturation dependence of air permeability[J]. Vadose Zone Journal, 2005, 4(4): 134-138.
|
[17] |
FREDLUND M D, WILSON G W, FREDLUND D G. Use of the grain-size distribution for estimation of the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 2002, 39(5): 1103-1117.
|
[18] |
ASSOULINE S, TESSIER D, BRUAND A. A conceptual model of the soil water retention curve[J]. Water Resources Research, 1998, 34(2): 223-231.
|
[19] |
ASSOULINE S. On the relationships between the pore size distribution index and characteristics of the soil hydraulic functions[J]. Water Resources Research, 2005, 41(7): 301-320.
|
[20] |
ASSOULINE S. Modeling the relationship between soil bulk density and the water retention curve[J]. Vadose Zone Journal, 2006, 5(2): 554-563.
|
[21] |
TULI A, HOPMANS J W, ROLSTON D E, et al. Comparison of air and water permeability between disturbed and undisturbed soils[J]. Soil Science Society of America Journal, 2005, 69(5): 1361-1371.
|
[22] |
OR D, WRAITH J M. Temperature effects on soil bulk dielectric permittivity measured by time domain reflectometry: a physical model[J]. Water Resources Research, 1999, 32(2): 371-383.
|
[23] |
TULLER M, OR D. Water films and scaling of soil characteristic curves at low water contents[J]. Water Resources Research, 2005, 41(9): 319-335.
|
[24] |
TOUMA J, VAUCLIN M. Experimental and numerical analysis of two-phase infiltration in a partially saturated soil[J]. Transport in Porous Media, 1986, 1(1): 27-55.
|
[25] |
TULLER M, OR D. Hydraulic conductivity of variably saturated porous media: Film and corner flow in angular pore space[J]. Water Resources Research, 2001, 37(5): 1257-1276.
|
[26] |
CHAN T P, GOVINDARAJU R S. Estimating soil water retention curve from particle-size distribution data based on polydisperse sphere systems[J]. Vadose Zone Journal, 2004, 3(4): 1443-1454.
|
[1] | YANG Xu, CAI Guoqing, LIU Qianqian, LI Fengzeng, SHAN Yepeng. Experimental study on influences of wetting-drying cycles on microstructure and water-retention characteristics of clay[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 11-15. DOI: 10.11779/CJGE2024S20006 |
[2] | ZHANG Jingyu, ZHAN Runhe, DENG Huafeng, LI Jianlin, WANG Wendong, WAN Liangpeng. Repeated shear mechanical properties and constitutive model of jointed sandstone under heat-wet cycles[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(10): 2148-2157. DOI: 10.11779/CJGE20230652 |
[3] | WANG Shi-ji, WANG Xiao-qi, LI Da, LI Xian, LIANG Guang-chuan, MUHAMMAD Qayyum Hamka. Evolution of fissures and bivariate-bimodal soil-water characteristic curves of expansive soil under drying-wetting cycles[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 58-63. DOI: 10.11779/CJGE2021S1011 |
[4] | ZHAO Gui-tao, HAN Zhong, ZOU Wei-lie, WANG Xie-qun. Influences of drying-wetting-freeze-thaw cycles on soil-water and shrinkage characteristics of expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1139-1146. DOI: 10.11779/CJGE202106018 |
[5] | CAI Zheng-yin, ZHU Rui, HUANG Ying-hao, ZHANG Chen, GUO Wan-li. Centrifugal model tests on deterioration process of canal under cyclic action of coupling wetting-drying and freeze-thaw[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1773-1782. DOI: 10.11779/CJGE202010001 |
[6] | HUANG Ying-hao, CAI Zheng-yin, ZHU Rui, ZHANG Chen, GUO Wan-li, ZHU Xun, CHEN Yong. Development of centrifuge model test equipment for canals in seasonal frozen areas under cyclic action of wetting-drying and freeze-thaw[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1181-1188. DOI: 10.11779/CJGE202007001 |
[7] | CAI Zheng-yin, ZHU Xun, HUANG Ying-hao, ZHANG Chen. Evolution rules of fissures in expansive soils under cyclic action of coupling wetting-drying and freeze-thaw[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1381-1389. DOI: 10.11779/CJGE201908001 |
[8] | WANG Zhang-qiong, YAN E-chuan. Influence of material composition and structural characteristics of rock on freeze-thaw damage and deterioration of schist[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk2): 86-90. DOI: 10.11779/CJGE2015S2018 |
[9] | JIANG Ji-wei, XIANG Wei, ZENG Wen, JOACHIM Rohn, YAO Yuan. Water-rock (soil) interaction mechanism of Huangtupo riverside landslide in Three Gorges Reservoir[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1209-1216. |
[10] | Influence of repeated drying and wetting cycles on mechanical behaviors of unsaturated soil[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1). |