• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Yu-wei, SONG Zhan-ping, XIE Yong-li. Prediction model for soil-water characteristic curve of loess under porosity change[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2017-2025. DOI: 10.11779/CJGE202211007
Citation: ZHANG Yu-wei, SONG Zhan-ping, XIE Yong-li. Prediction model for soil-water characteristic curve of loess under porosity change[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2017-2025. DOI: 10.11779/CJGE202211007

Prediction model for soil-water characteristic curve of loess under porosity change

More Information
  • Received Date: September 05, 2021
  • Available Online: December 08, 2022
  • The loess has obvious macropore structure. The internal pores change continuously in the process of water immersion and collapsibility, resulting in the dynamic change of soil-water characteristic curve in the process of water immersion. In order to simply predict the soil-water characteristic curve of loess under different pore conditions, taking the pore volume function as the breakthrough point, assuming the influence law of the change of soaking pore on the pore volume function, and introducing the translation factor ξ1i and the compression factor ξ2i, the relationship among the translation factor, the compression factor and the pore index e is established through the average pore radius, and the different pores are derived based on the initial pore state. Based on the Gardner model and introducing the pore index, the model for the soil-water characteristic curve of loess considering the change of soaking pore is established. When the influences of pore change are not considered, the model degenerates to the Gardner model. The model contains six parameters, which can be determined by experiments. The parameters of the model are calibrated by the initial state, and the soil-water characteristic curve of loess with pore change is predicted. The combination shows that the predicted results by the model are in good agreement with the test ones. The evolution law of the soil-water characteristics of loess under different conditions of water soaked pore changes can be accurately predicted by using this model, which may provide preference for establishing the constitutive model for loess.
  • [1]
    郑方, 邵生俊, 佘芳涛, 等. 重塑黄土在不同基质吸力下的真三轴剪切试验[J]. 岩土力学, 2020, 41(增刊1): 156–162. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2020S1018.htm

    ZHENG Fang, SHAO Sheng-jun, SHE Fang-tao, et al. True triaxial shear tests of remolded loess under different matrix suctions[J]. Rock and Soil Mechanics, 2020, 41(S1): 156–162. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2020S1018.htm
    [2]
    占鑫杰, 詹良通, 林伟岸, 等. 一种基于持水曲线的市政污泥水分分布测试方法研究[J]. 岩土工程学报, 2021, 43(11): 2112–2118. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18824.shtml

    ZHAN Xin-jie, ZHAN Liang-tong, LIN Wei-an, et al. Moisture distribution in sewage sludge based on soil-water characteristic curve[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2112–2118. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18824.shtml
    [3]
    李达, 汪时机, 李贤, 等. 不同覆土压力下砂质黏性紫色土的土–水特征曲线研究[J]. 岩土工程学报, 2021, 43(10): 1950–1956. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18803.shtml

    LI Da, WANG Shi-ji, LI Xian, et al. Soil-water characteristic curve of sandy clayey purple soil under different overburden pressures[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1950–1956. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18803.shtml
    [4]
    BROOKS R H, COREY A T. Hydraulic Properties of Porous Media[M]. Fort Collins: Colorado State University, 1964.
    [5]
    NUTH M, LALOUI L. Advances in modelling hysteretic water retention curve in deformable soils[J]. Computers and Geotechnics, 2008, 35(6): 835–844. doi: 10.1016/j.compgeo.2008.08.001
    [6]
    GARDNER W R. Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table[J]. Soil Science, 1958, 85(4): 228–232. doi: 10.1097/00010694-195804000-00006
    [7]
    FREDLUND D G, XING A Q. Equations for the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 1994, 31(4): 521–532. doi: 10.1139/t94-061
    [8]
    费锁柱, 谭晓慧, 董小乐, 等. 基于土体孔径分布的土水特征曲线预测[J]. 岩土工程学报, 2021, 43(9): 1691–1699. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18770.shtml

    FEI Suo-zhu, TAN Xiao-hui, DONG Xiao-le, et al. Prediction of soil-water characteristic curve based on pore size distribution of soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1691–1699. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18770.shtml
    [9]
    VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892–898. doi: 10.2136/sssaj1980.03615995004400050002x
    [10]
    LU N, LIKOS W J. Suction stress characteristic curve for unsaturated soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(2): 131–142. doi: 10.1061/(ASCE)1090-0241(2006)132:2(131)
    [11]
    SHENG D C. Review of fundamental principles in modelling unsaturated soil behaviour[J]. Computers and Geotechnics, 2011, 38(6): 757–776.
    [12]
    RUSSELL A R, BUZZI O. A fractal basis for soil-water characteristics curves with hydraulic hysteresis[J]. Géotechnique, 2012, 62(3): 269–274. doi: 10.1680/geot.10.P.119
    [13]
    孙德安, 张俊然, 吕海波. 全吸力范围南阳膨胀土的土–水特征曲线[J]. 岩土力学, 2013, 34(7): 1839–1846. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201307004.htm

    SUN De-an, ZHANG Jun-ran, LÜ Hai-bo. Soil-water characteristic curve of Nanyang expansive soil in full suction range[J]. Rock and Soil Mechanics, 2013, 34(7): 1839–1846. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201307004.htm
    [14]
    孙德安, 刘文捷, 吕海波. 桂林红黏土的土-水特征曲线[J]. 岩土力学, 2014, 35(12): 3345–3351. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201412001.htm

    SUN De-an, LIU Wen-jie, LÜ Hai-bo. Soil-water characteristic curve of Guilin lateritic clay[J]. Rock and Soil Mechanics, 2014, 35(12): 3345–3351. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201412001.htm
    [15]
    高游, 孙德安, 张俊然, 等. 考虑孔隙比和水力路径影响的非饱和土土水特性研究[J]. 岩土工程学报, 2019, 41(12): 2191–2196. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18065.shtml

    GAO You, SUN De-an, ZHANG Jun-ran, et al. Soil-water characteristics of unsaturated soils considering initial void ratio and hydraulic path[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2191–2196. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18065.shtml
    [16]
    SUN D A, SHENG D C, SLOAN S W. Elastoplastic modelling of hydraulic and stress-strain behaviour of unsaturated soils[J]. Mechanics of Materials, 2007, 39(3): 212–221.
    [17]
    胡冉, 陈益峰, 周创兵. 基于孔隙分布的变形土土水特征曲线模型[J]. 岩土工程学报, 2013, 35(8): 1451–1462. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract15253.shtml

    HU Ran, CHEN Yi-feng, ZHOU Chuang-bing. A water retention curve model for deformable soils based on pore size distribution[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1451–1462. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract15253.shtml
    [18]
    周葆春, 孔令伟. 考虑体积变化的非饱和膨胀土土水特征[J]. 水利学报, 2011, 42(10): 1152–1160. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201110002.htm

    ZHOU Bao-chun, KONG Ling-wei. Effect of volume changes on soil-water characteristics of unsaturated expansive soil[J]. Journal of Hydraulic Engineering, 2011, 42(10): 1152–1160. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201110002.htm
    [19]
    孙德安. 非饱和土的水力和力学特性及其弹塑性描述[J]. 岩土力学, 2009, 30(11): 3217–3231. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200911003.htm

    SUN De-an. Hydro-mechanical behaviours of unsaturated soils and their elastoplastic modelling[J]. Rock and Soil Mechanics, 2009, 30(11): 3217–3231. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200911003.htm
    [20]
    ZHOU A, SHENG D, CARTER J. Modelling the effect of initial density on soil-water characteristic curves[J]. Géotechnique, 2012, 62(8): 669–680.
    [21]
    SIMMS P H, YANFUL E K. Measurement and estimation of pore shrinkage and pore distribution in a clayey till during soil-water characteristic curve tests[J]. Canadian Geotechnical Journal, 2001, 38(4): 741–754.
    [22]
    张雪东, 赵成刚, 刘艳, 等. 变形对土水特征曲线影响规律模拟研究[J]. 土木工程学报, 2011, 44(7): 119–126. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201107018.htm

    ZHANG Xue-dong, ZHAO Cheng-gang, LIU Yan, et al. Modeling study of the relationship between deformation and water retention curve[J]. China Civil Engineering Journal, 2011, 44(7): 119–126. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201107018.htm
    [23]
    HUANG S Y, BARBOUR S L, FREDLUND D G. Development and verification of a coefficient of permeability function for a deformable unsaturated soil[J]. Canadian Geotechnical Journal, 1998, 35(3): 411–425.
    [24]
    GALLIPOLI D. A hysteretic soil-water retention model accounting for cyclic variations of suction and void ratio[J]. Géotechnique, 2012, 62(7): 605–616.
    [25]
    HU R, CHEN Y F, LIU H H, et al. A water retention curve and unsaturated hydraulic conductivity model for deformable soils: consideration of the change in pore-size distribution[J]. Géotechnique, 2013, 63(16): 1389–1405.
    [26]
    DELLA VECCHIA G, DIEUDONNÉ A C, JOMMI C, et al. Accounting for evolving pore size distribution in water retention models for compacted clays[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2015, 39(7): 702–723.
    [27]
    MUALEM Y. A new model for predicting the hydraulic conductivity of unsaturated porous media[J]. Water Resources Research, 1976, 12(3): 513–522.
    [28]
    TANAKA H, SHIWAKOTI D R, OMUKAI N, et al. Pore size distribution of clayey soils measured by mercury intrusion porosimetry and its relation to hydraulic conductivity[J]. Soils and Foundations, 2003, 43(6): 63–73.
    [29]
    MONROY R, ZDRAVKOVIC L, RIDLEY A. Evolution of microstructure in compacted London clay during wetting and loading[J]. Géotechnique, 2010, 60(2): 105–119.
    [30]
    LLORET A, ROMERO E, VILLAR M V. FEBEX II project final report on thermo-hydro-mechanical laboratory tests[R]. Madrid: Publication Technical ENRESA 10/2004, 2004.
    [31]
    张玉伟, 宋战平, 翁效林. Q3原状黄土与重塑黄土的土水特性研究[J]. 水资源与水工程学报, 2019, 30(3): 224–229. https://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ201903035.htm

    ZHANG Yu-wei, SONG Zhan-ping, WENG Xiao-lin. Study on soil water characteristic curve of Q3 intact and remolded loess[J]. Journal of Water Resources and Water Engineering, 2019, 30(3): 224–229. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ201903035.htm
  • Related Articles

    [1]JIA Wei, LI Yao, GUO Zhanglong, TIAN Chaopeng. Model tests on soil deformation of surrounding soil of Luochuan tunnel[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S1): 164-169. DOI: 10.11779/CJGE2024S10021
    [2]HAN Xingbo, CHEN Ziming, YE Fei, LIANG Xiaoming, FENG Haolan, XIA Tianhan. Model tests on disturbance characteristics of surrounding rock of loess shield tunnels during excavation[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 968-977. DOI: 10.11779/CJGE20230054
    [3]ZHOU Yang, LAI Hongpeng, WANG Xingguang, KONG Jun, LI Zhilei, HONG Qiuyang. Experimental study on improving mechanical characteristics of initial support structure of deep buried large-span tunnels with long bolts or cables[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 853-863. DOI: 10.11779/CJGE20221533
    [4]HUANG Dawei, ZHAO Zhiqi, XU Changjie, LUO Wenjun, GENG Daxin, SHI Yufeng. Experimental study on influences of side grouting on deformation of shield tunnels under loads[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(3): 510-518. DOI: 10.11779/CJGE20221422
    [5]ZHANG Yu-ting, AN Xiao-yu, JIN Ya-fei. Centrifugal model tests on settlement of structures caused by tunnel excavation[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 54-57. DOI: 10.11779/CJGE2022S2012
    [6]XU Jing-min, ZHANG Ding-wen, LIU Song-yu. Tunneling-induced sandy ground deformation affected by surface framed structures[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 602-612. DOI: 10.11779/CJGE202204002
    [7]LIU Xue-zeng, LAI Hao-ran, SANG Yun-long, DUAN Jun-ming, DING Shuang. Model tests on effect of bonded steel plate reinforcement of shield tunnels under different deformation conditions[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2115-2123. DOI: 10.11779/CJGE202011017
    [8]CAI Yi, ZHANG Cheng-ping, MIN Bo, YANG Gong-biao. Deformation characteristics of ground with voids induced by shallow metro tunnelling[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 534-543. DOI: 10.11779/CJGE201903016
    [9]LI Jiao-yang, LIU Wei, ZOU Jin-jie, ZHAO Yu, GONG Xiao-nan. Large-scale model tests on face instability of shallow shield tunnels in sand[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 562-567. DOI: 10.11779/CJGE201803022
    [10]WANG Xiu-ying, TAN Zhong-sheng, LI Jian, DU Chao-wei. Laboratory tests on mechanical characteristics of fully and partially wrapped waterproof systems for tunnel lining[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 654-659.
  • Cited by

    Periodical cited type(5)

    1. 许志雄,朱要亮. 高应力状态下岩石蠕变离散元模拟研究. 水利与建筑工程学报. 2025(01): 131-135+153 .
    2. Jinzhi Luo,Yanyan Cai,Jin Yu,Jianzhi Zhang,Yaoliang Zhu,Yao Wei. Development and applications of the quasi-dynamic triaxial apparatus for deep rocks. Deep Underground Science and Engineering. 2024(01): 70-90 .
    3. 黄勤钲. 高应力状态下岩石蠕变本构模型的研究. 长春工程学院学报(自然科学版). 2024(03): 32-36 .
    4. 易雪枫,王宇,李鹏,蔡美峰. 疲劳–蠕变交互荷载下含软弱夹层空心圆柱花岗岩变形失稳特性试验研究. 岩石力学与工程学报. 2024(11): 2766-2780 .
    5. 李克升,刘传孝. 梯级等幅周期循环荷载作用下双裂隙黄砂岩力学特性试验研究. 岩石力学与工程学报. 2023(08): 1945-1958 .

    Other cited types(4)

Catalog

    Article views (247) PDF downloads (41) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return