• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
MU Qing-yi, DANG Ying-jie, DONG Qi, LIAO Hong-jian, DONG Huan. Water-retention characteristics and collapsibity behaviors: comparison between intact and compacted loesses[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1496-1504. DOI: 10.11779/CJGE201908014
Citation: MU Qing-yi, DANG Ying-jie, DONG Qi, LIAO Hong-jian, DONG Huan. Water-retention characteristics and collapsibity behaviors: comparison between intact and compacted loesses[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1496-1504. DOI: 10.11779/CJGE201908014

Water-retention characteristics and collapsibity behaviors: comparison between intact and compacted loesses

More Information
  • Received Date: July 31, 2018
  • Published Date: August 24, 2019
  • The compacted and intact loesses with the same dry density and water content are tested to investigate the structural effects on the water-retention characteristics and collapsibility behaviors of loess. The scanning electron microscopy (SEM) tests are carried out to assist in the interpretation of test results. It is found that the air entry value of the intact loess is 75% smaller than that of the compacted loess. This is likely because that the extra-large pores in the intact loess result in pronounced ink-bottle effects. The water-retention curve of the intact loess exhibits larger and smaller hysteresis than that of the compacted loess at suctions ranging from 0.1 to 7 kPa and from 7 to 80 kPa, respectively. This can be explained by the different wetting-drying history experienced by intact and compacted loesses. Similar collapsibility potential is observed for the intact and compacted loesses with high water contents (>18%), whereas the wetting-induced collapsibility of the intact loess is larger than that of the compacted loess with low water content (16%). This is because that the clay bonding in the intact loess results in a more resistant structure. This resistant structure assists in the intact loess to maintain large void ratios during mechanical loading (200 kPa). During soaking, clay bonding is destroyed and significant collapse is induced. In addition, the differences in the yield stress between the intact and compacted loesses increase with the decreasing water content. It is indicated that the resistant structure of the intact loess is enhanced with the decrease of the water content.
  • [1]
    陈正汉. 非饱和土与特殊土力学的基本理论研究[J]. 岩土工程学报, 2014, 36(2): 201-272.
    (CHEN Zheng-han.On basic theories of unsaturated soils and special soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 201-272. (in Chinese))
    [2]
    LIU Z, LIU F, MA F, et al.Collapsibility, composition, and microstructure of loess in China[J]. Canadian Geotechnical Journal, 2015, 53(4): 673-686.
    [3]
    NG C W W, MU Q Y, ZHOU C. Effects of soil structure on the shear behaviour of an unsaturated loess at different suctions and temperatures[J]. Canadian Geotechnical Journal, 2017, 54(2): 270-279.
    [4]
    ASSALLAY A M, ROGERS C D F, SMALLEY I J. Formation and collapse of metastable particle packings and open structures in loess deposits[J]. Engineering Geology, 1997, 48(1/2): 101-115.
    [5]
    CHEN Z H, FREDLUND D G, GAN J K.Overall volume change, water volume change, and yield associated with[J]. Canadian Geotechnical Journal, 1999, 36(2): 321-329.
    [6]
    张茂花, 谢永利, 刘保健. 增 (减) 湿时黄土的湿陷系数曲线特征[J]. 岩土力学, 2005, 26(9): 1363-1368.
    (ZHANG Mao-hua, XIE Yong-li, LIU Bao-jian.Characteristics of collapsibility coefficient curves of loess during moistening and demoistening process[J]. Rock and Soil Mechanics, 2005, 26(9): 1363-1368. (in Chinese))
    [7]
    卢靖, 程彬. 非饱和黄土土水特征曲线的研究[J]. 岩土工程学报, 2007, 29(10): 1591-1592.
    (LU Jing, CHENG Bin, Research on soil-water characteristic curve of unsaturated loess[J]. Chinese Journal of Geotechnical Engineering, 29(10): 1591-1592. (in Chinese))
    [8]
    王铁行, 卢靖, 岳彩坤. 考虑温度和密度影响的非饱和黄土土-水特征曲线研究[J]. 岩土力学, 2008, 29(1): 1-5.
    (WANG Tie-hang, LU Jing, YUE Cai-kun, Soil-water characteristic curve for unsaturated loess considering temperature and density effect[J]. Rock and Soil Mechanics, 2008, 29(1): 1-5. (in Chinese))
    [9]
    关亮, 陈正汉, 黄雪峰, 等. 非饱和填土 (黄土) 的湿化变形研究[J]. 岩石力学与工程学报, 2011, 30(8): 1698-1704.
    (GUAN Liang, CHEN Zheng-han, HUANG Xue-feng, et al.Study of wetting deformation of unsaturated remolded loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(8): 1698-1704. (in Chinese))
    [10]
    MUNOZCASTELBLANCO J, DELAGE P, PEREIRA J M, et al.Some aspects of the compression and collapse behaviour of an unsaturated natural loess[J]. Géotechnique Letters, 2011, 1(2):17-22.
    [11]
    陈存礼, 褚峰, 李雷雷, 等. 侧限压缩条件下非饱和原状黄土的土水特征[J]. 岩石力学与工程学报, 2011, 30(3): 610-615.
    (CHEN Cun-li, CHU Feng, LI Lei-lei, CAO Ze-min, et al.Soi-water characteristics of unsaturated loess under confined compression condition[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(3): 610-615. (in Chinese))
    [12]
    刘奉银, 张昭, 周冬, 等. 密度和干湿循环对黄土土-水特征曲线的影响[J]. 岩土力学, 2011, 32(增刊2): 132-136.
    (LIU Feng-yin, ZHANG Zhao, ZHOU Dong, et al.Effects of initial density and drying-wetting cycle on soil water characteristic curve of unsaturated loess[J]. Rock and Soil Mechanics, 2011, 32(S2): 132-136. (in Chinese))
    [13]
    赵天宇, 王锦芳. 考虑密度与干湿循环影响的黄土土水特征曲线[J]. 中南大学学报(自然科学版), 2012, 43(6): 2445-2453.
    (ZHAO Tian-yu, WANG Jin-fang.Soil-water characteristic curve for unsaturated loess soil considering density and wetting-drying cycle effects[J]. Journal of Central South University (Science and Technology), 2012, 43(6): 2445-2453. (in Chinese))
    [14]
    JIANG M, HU H, LIU F.Summary of collapsible behaviour of artificially structured loess in oedometer and triaxial wetting tests[J]. Canadian Geotechnical Journal, 2012, 49(10): 1147-1157.
    [15]
    褚峰, 邵生俊, 陈存礼. 干密度和竖向应力对原状非饱和黄土土水特征影响的试验研究[J]. 岩石力学与工程学报, 2014, 33(2): 413-420.
    (CHU Feng, SHAO Sheng-jun, CHEN Cun-li.Experimental research on influences of dry density and vertical stress on soil water characteristic curves of intact unsaturated loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(2): 413-420. (in Chinese))
    [16]
    张登飞, 陈存礼, 杨炯, 等. 侧限条件下增湿时湿陷性黄土的变形及持水特性[J]. 岩石力学与工程学报, 2016, 35(3): 604-612.
    (ZHANG Deng-fei, CHEN Cun-li, YANG Jiong, et al.Deformation and water retention behaviour of collapsible loess during wetting under lateral confinement[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(3): 604-612. (in Chinese))
    [17]
    韦锋, 姚志华, 苏立海, 等. 非饱和Q3原状黄土及其重塑土的持水特性研究[J]. 工程勘察, 2015, 43(8): 1-5.
    (WEI Feng, YAO Zhi-hua, SU Li-hai, et al.Study on water holding capacity of unsaturated undisturbed and remolded loess of Q3[J]. Geotechnical Investigation & Surveying, 2015, 43(8): 1-5. (in Chinese))
    [18]
    邵生俊, 王丽琴, 邵帅, 等. 黄土的结构屈服及湿陷变形的分析[J]. 岩土工程学报, 2017, 39(8): 1357-1365.
    (SHAO Sheng-jun, WANG Li-qin, SHAO Shuai, et al.Structural yield and collapse deformation of loess[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1357-1365. (in Chinese))
    [19]
    陈存礼, 张登飞, 张洁, 等. 等向应力下原状黄土的压缩及增湿变形特性研究[J]. 岩石力学与工程学报, 2017, 36(7): 1736-1747.
    (CHEN Cun-li, ZHANG Deng-fei, ZHANG Jie, et al.Compression and wetting deformation behavior of intact loess underisotropic stresses[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(7): 1736-1747. (in Chinese))
    [20]
    王娇, 邵生俊, 陈攀. 非饱和重塑黄土的土水特性及压缩屈服与湿陷性的研究[J]. 岩土力学, 2017, 38(增刊2): 217-222.
    (WANG Jiao, SHAO Sheng-jun, CHEN Pan.Experimental study of soil water properties, compression yield and collapse deformation of unsaturated remolded loess[J]. Rock and Soil Mechanics, 2017, 38(S2): 217-222. (in Chinese))
    [21]
    杨玉生, 李靖, 邢义川, 等. 压实黄土增湿变形性质及其影响因素试验研究[J]. 岩土工程学报, 2017, 39(4): 626-635.
    (YANG Yu-sheng, LI Jing, XING Yi-chuan, et al.Experimental study on moistening deformation characteristics of compacted loess and their influencing factors[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 626-635. (in Chinese))
    [22]
    马闫, 王家鼎, 彭淑君, 等. 大厚度黄土自重湿陷性场地浸水湿陷变形特征研究[J]. 岩土工程学报, 2014, 36(3): 537-546.
    (MA Yan, WANG Jia-ding, PENG Shu-jun, et al.Immersion tests on characteristics of deformation of self-weight collapsible loess under overburden pressure[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 537-546. (in Chinese))
    [23]
    邵生俊, 李骏, 邵将, 等. 大厚度湿陷性黄土地层的现场砂井浸水试验研究[J]. 岩土工程学报, 2016, 38(9): 1549-1558.
    (SHAO Sheng-jun, LI Jun, SHAO Jiang, et al.In-situ sand well immersion tests on self-weight collapsible loess site with large depth[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(9): 1549-1558. (in Chinese))
    [24]
    安鹏, 张爱军, 邢义川, 等. 伊犁深厚湿陷性黄土浸水入渗及沉降变形特征分析[J]. 岩土力学, 2017, 38(2): 557-564.
    (AN Peng, ZHANG Ai-jun, XING Yi-chuan, et al.Analysis of soak infiltration and deformation characteristics for thick collapsible loess in Ili region[J]. Rock and Soil Mechanics, 2017, 38(2): 557-564. (in Chinese))
    [25]
    ZHAN T L T, YANG Y B, CHEN R, et al. Influence of clod size and water content on gas permeability of a compacted loess[J]. Canadian Geotechnical Journal, 2014, 51(12): 1468-1474.
    [26]
    PHAMH Q, FREDLUND D G, BARBOUR S L.A study of hysteresis models for soil-water characteristic curves[J]. Canadian Geotechnical Journal, 2005, 42(6): 1548-1568.
    [27]
    MU Q Y, NG C W W, ZHOU C, et al. A new model for capturing void ratio-dependent unfrozen water characteristics curves[J]. Computers and Geotechnics, 2018, 101: 95-99.
    [28]
    LU N, KHORSHIDI M.Mechanisms for soil-water retention and hysteresis at high suction range[J]. Journal of Geotechnical and Geoenvironmental Engineering,2015, 141(8): 04015032.
    [29]
    WHEELER S J, SHARMA R S, BUISSON M S R. Coupling of hydraulic hysteresis and stress-strain behaviour in unsaturated soils[J]. Géotechnique, 2003, 53(1): 41-54.
    [30]
    武小鹏, 赵永虎, 徐安花, 等. 黄土湿陷性与其物理力学指标的关系及评价方法[J]. 长江科学院院报, 2018, 35(6), 75-80.
    (WU Xiao-peng, ZHAO Yong-hu, XU An-hua, et al.Correlation of collapsibility of loess with physical indexes and evaluation methods[J]. Journal of Yangtze River Scientific Research Institute, 2018, 35(6), 75-80. (in Chinese))
    [31]
    ALONSO E E, PINYOL N M, GENS A.Compacted soil behaviour: initial state, structure and constitutive modeling[J]. Géotechnique, 2013, 63(6): 463-478.
    [32]
    SIVAKUMAR V, WHEELER S J.Influence of compaction procedure on the mechanical behaviour of an unsaturated compacted clay: part 1 wetting and isotropic compression[J]. Géotechnique, 2010, 50(4): 359-36.
  • Related Articles

    [1]XIA Yuanyou, ZHANG Hongwei, LIN Manqing, YAN Yaofeng. Prediction of tunnel rockbursts based on data preprocessing technology considering influences of stress gradient of surrounding rock[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 1987-1994. DOI: 10.11779/CJGE20220701
    [2]LI Shao-hong, WANG Shao-yang, ZHU Jian-dong, LI Bu, YANG Jie, WU Li-zhou. Prediction of rock burst tendency based on weighted fusion and improved cloud model[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 1075-1083. DOI: 10.11779/CJGE201806013
    [3]XU Chen, LIU Xiao-li, WANG En-zhi, WANG Si-jing. Prediction and classification of strain mode rockburst based on five-factor criterion and combined weight-ideal point method[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2245-2252. DOI: 10.11779/CJGE201712013
    [4]SU Guo-shao, CHEN Zhi-yong, YIN Hong-xue, ZHANG Xiao-he, MO Jin-hai. True triaxial tests on rockburst of granite after high temperatures[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(9): 1586-1594. DOI: 10.11779/CJGE201609005
    [5]ZHAO Zhou-neng, FENG Xia-ting, XIAO Ya-xun, FENG Guang-liang. Microseismic characteristics and rockburst risk of deep tunnel constructed by different excavation methods[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 867-876. DOI: 10.11779/CJGE201605012
    [6]JIA Yi-peng, LÜ Qing, SHANG Yue-quan, ZHI Mo-mo, DU Li-li. Rockburst prediction based on evidence theory[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1079-1086. DOI: 10.11779/CJGE201406013
    [7]WANG Bin, ZHAO Fu-jun, YIN Tu-bing. Prevention of buckling rockburst with water based on statics and dynamics experiments on water-saturated rock[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1863-1869.
    [8]CHEN Haijun, LI Nenghui, NIE Dexin, SHANG Yuequan. A model for prediction of rockburst by artificial neural network[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 229-232.
    [9]Xu Linsheng, Wang Lansheng. Study on the laws of rockburst and its forecasting in the tunnel of Erlang Mountain road[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(5): 569-572.
    [10]Pan Yishan, Zhang Mengtao, Wang Laigui, Li Guozhen. Study on Rockburst by Equivalent Material Simulation Tests[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(4): 49-56.

Catalog

    Article views (306) PDF downloads (329) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return