• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
JIA Yi-peng, LÜ Qing, SHANG Yue-quan, ZHI Mo-mo, DU Li-li. Rockburst prediction based on evidence theory[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1079-1086. DOI: 10.11779/CJGE201406013
Citation: JIA Yi-peng, LÜ Qing, SHANG Yue-quan, ZHI Mo-mo, DU Li-li. Rockburst prediction based on evidence theory[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1079-1086. DOI: 10.11779/CJGE201406013

Rockburst prediction based on evidence theory

More Information
  • Received Date: June 05, 2013
  • Published Date: June 19, 2014
  • Rockburst is a dynamic breakage phenomenon existing in rock excavation in high in-situ stress zone, and its mechanism is complicated and the occurrence is influenced by many factors. It is almost impossible to make the prediction of its intensity through any single evaluating factor. Based on the idea of information fusion, a methodology is proposed for predicting the rockburst using the evidence theory, which can reflect the comprehensive influences of different factors. Three indices related to the occurrence condition of rockburst are taken into account as evidences in the proposed method, including the ratio of the maximum tangential stresses on cavern boundaries to the uniaxial compressive strength of rock, the ratio of the uniaxial compressive strength to the uniaxial tensile strength of rock and the elastic energy index of rock. The basic probability assignment functions are objectively constructed using the rough set theory. The predicted results of 12 practical cases show that the evidence theory method has relatively high accuracy. Finally, the model is applied to Cangling tunnel and the exploratory tunnel of Jinping II Hydropower Station. The results agree well with the field situations, which again illustrates the practicability of the proposed method.
  • [1]
    钱七虎. 地下工程建设安全面临的挑战与对策[J]. 岩石力学与工程学报, 2012, 31(10): 1945-1956. (QIAN Qi-hu. Challenges faced by underground projects construction safety and countermeasures[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(10): 1945-1956. (in Chinese))
    [2]
    陈卫忠, 吕森鹏, 郭小红, 等. 脆性岩石卸围压试验与岩爆机理研究[J]. 岩土工程学报, 2010, 32(6): 963-969. (CHEN Wei-zhong, LÜ Sen-peng, GUO Xiao-hong, et al.Unloading confining pressure for brittle rock and mechanism of rock burst[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6): 963-969. (in Chinese))
    [3]
    王斌, 赵伏军, 尹土兵. 基于饱水岩石静动力学试验的水防治屈曲型岩爆分析[J]. 岩土工程学报, 2011, 33(12): 1863-1869. (WANG Bin, ZHAO Fu-jun, YIN Tu-bing. Prevention of buckling rockburst with water based on statics and dynamics experiments on water-saturated rock[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1863-1869. (in Chinese))
    [4]
    陈智强, 张永兴, 周检英. 开挖诱发隧道围岩变形的红外热像试验研究[J]. 岩土工程学报, 2012, 34(7): 1271-1277. (CHEN Zhi-qiang, ZHANG Yong-xing, ZHOU Jian-ying. Experimental study on infrared photographs of deformation and failure of surrounding rock of tunnels procession induced by excavation[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1271-1277. (in Chinese))
    [5]
    张镜剑, 傅冰骏. 岩爆及其判据和防治[J]. 岩石力学与工程学报, 2008, 27(10): 2034-2042. (ZHANG Jing-jian, FU Bing-jun. Rockburst and its criteria and control[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(10): 2034-2042. (in Chinese))
    [6]
    吕庆, 孙红月, 尚岳全, 等. 深埋特长公路隧道岩爆预测综合研究[J]. 岩石力学与工程学报, 2005, 24(16): 2982-2988. (LÜ Qing, SUN Hong-yue, SHANG Yue-quan, et al. Comprehensive study on prediction of rockburst in deep and over-length highway tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(16): 2982-2988. (in Chinese))
    [7]
    陈海军, 郦能惠, 聂德新, 等. 岩爆预测的人工神经网络模型[J]. 岩土工程学报, 2002, 24(2): 229-232. (CHEN Hai-jun, LI Neng-hui, NIE De-xin, et al. A model for prediction of rockburst by artificial neural network[J]. Chinese Journal of Geotechnical Engineering, 2002,24(2): 229-232. (in Chinese))
    [8]
    徐飞, 徐卫亚. 岩爆预测的粒子群优化投影寻踪模型[J].岩土工程学报, 2010, 32(5): 718-723. (XU Fei, XU Wei-Ya. Projection pursuit model based on particle swarm optimization for rock burst prediction[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(5): 718-723. (in Chinese))
    [9]
    高玮. 基于蚁群聚类算法的岩爆预测研究[J]. 岩土工程学报, 2010, 32(6): 874-880. (GAO Wei. Prediction of rock burst based on ant colony clustering algorithm[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6): 874-880. (in Chinese))
    [10]
    宫凤强, 李夕兵. 岩爆发生和烈度分级预测的距离判别方法及应用[J]. 岩石力学与工程学报, 2007, 26(5): 1012-1018. (GONG Feng-qiang, LI Xi-bing. A distance discriminant analysis method for prediction of possibility and classification of rockburst and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(5): 1012-1018. (in Chinese))
    [11]
    王元汉, 李卧东, 李启光, 等. 岩爆预测的模糊数学综合评判方法[J]. 岩石力学与工程学报, 1998, l7(5): 493-501. (WANG Yuan-han, LI Wo-dong, LI Qi-guang, et al. Method of fuzzy comprehensive evaluations for rockburst prediction[J]. Chinese Journal of Rock Mechanics and Engineering, 1998, l7(5): 493-501. (in Chinese))
    [12]
    葛启发, 冯夏庭. 基于AdaBoost组合学习方法的岩爆分类预测研究[J]. 岩土力学, 2008, 29(4): 943-948. (GE Qi-fa, FENG Xia-ting. Classification and prediction of rockburst using AdaBoost combination learning method[J]. Rock and Soil Mechanics, 2008, 29(4): 943-948. (in Chinese))
    [13]
    梁志勇. 锦屏二级水电站引水隧洞岩爆预测及防治对策研究[D]. 成都: 成都理工大学, 2004. (LIANG Zhi-yong. Study on the pridiction and prevention of rockburst in the diversion tunnel of Jinping II Hydropower[D]. Chengdu: Chengdu University of Technology, 2004. (in Chinese))
    [14]
    DEMPSTER A P. Upper and lower probabilities induced by a multivalued mapping[J]. Annals of Mathematical Statistics. 1964, 38(2): 325-339.
    [15]
    SHAFER G. A Mathematical theory of evidence[M]. Princeton: Princeton University Press, 1976.
    [16]
    韩进, 施龙青, 翟培合, 等. 多属性决策及D-S证据理论在底板突水决策中的应用[J]. 岩石力学与工程学报, 2009, 28(增刊2): 3727-3732. (HAN Jin, SHI Long-qing, ZHAI Pei-he, et al. Application of multi-attribute decision and d-s evidence theory to water-inrush decision of floor in mining[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(S2): 3727-3732. (in Chinese))
    [17]
    张清华, 李乔, 唐亮, 等. 基于证据理论的结构损伤识别研究[J]. 振动工程学报, 2007, 20(2): 200-205. (ZHANG Qing-hua, LI Qiao, TANG Liang. Study of structural damage identification based on evidence theory[J]. Journal of Vibration Engineering, 2007, 20(2): 200-205. (in Chinese))
    [18]
    PAWLAK Z. Rough set theory and its applications to data analysis[J]. Cybernetics and Systems, 1998, 29: 661-688.
    [19]
    王国胤, 姚一豫, 于洪. 粗糙集理论与应用研究综述[J]. 计算机学报, 2009, 32(7): 1229-1246. (WANG Guo-yin, YAO Yi-yu, YU Hong. A Survey on rough set theory and applications[J]. Chinese Journal of Computers, 2009, 32(7): 1229-1246. (in Chinese))

Catalog

    Article views (342) PDF downloads (385) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return