Citation: | TAO Gao-liang, CHEN Yin, YUAN Bo, GAN Shi-chao, WU Xiao-kang, ZHU Xue-liang. Predicting soil-water retention curve based on NMR technology and fractal theory[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1466-1472. DOI: 10.11779/CJGE201808012 |
[1] |
ARYA L M, PARI J F.A physico-empirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data[J]. Soil Science Society of America Journal, 1981, 45(6): 1023-1030.
|
[2] |
刘士雨, 俞缙, 蔡燕燕, 等. 基于土壤物理特性扩展技术的土水特征曲线预测方法[J]. 岩土工程学报, 2017, 39(5): 924-931.
(LIU Shi-yu, YU Jin, CAI Yan-yan, et al.Prediction of soil water characteristic curve using physically based scaling technique[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 924-931. (in Chinese)) |
[3] |
SIMMS P H, YANFUL E K.Measurement and estimation of pore shrinkage and pore distribution in a clayey till during soil water characteristic curve tests[J]. Canadian Geotechnical Journal, 2001, 38(4): 741-754.
|
[4] |
SIMMS P H, YANFUL E K.A pore-network model for hydromechanical coupling in unsaturated compacted clayey soils[J]. Canadian Geotechnical Journal, 2005, 42(2): 499-514.
|
[5] |
张雪东, 赵成刚, 刘艳, 等. 变形对土水特征曲线影响规律模拟研究[J]. 土木工程学报, 2011(7): 119-126.
(ZHANG Xue-dong, ZHAO Cheng-gang, LIU Yan, et al.Modeling study of the relationship between deformation and water retention curve[J]. China Civil Engineering Journal, 2011(7): 119-126. (in Chinese)) |
[6] |
胡冉, 陈益峰, 周创兵. 基于孔隙分布的变形土土水特征曲线模型[J]. 岩土工程学报, 2013, 35(8): 1451-1462.
(HU Ran, CHEN Yi-feng, ZHOU Chuang-bing.A water retention curve model for deformable soils based on pore size distribution[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1451-1462. (in Chinese)) |
[7] |
NOH J H, LEE S R, PARK H.Prediction of cryo-SWCC during freezing based on pore-size distribution[J]. International Journal of Geomechanics, 2012, 12(4): 428-438.
|
[8] |
侯晓坤, 李同录, 谢萧, 等. 甘肃Q3原状黄土的微观结构对其土-水特征曲线的影响[J]. 水利学报, 2016, 47(10): 1307-1314.
(HOU Xiao-kun, LI Tong-lu, XIE Xiao, et al.Effect of undisturbed Q3 loess’s microstructure on its SWCC[J]. Journal of Hydraulic Engineering, 2016, 47(10): 1307-1314. (in Chinese)) |
[9] |
徐永福, 董平. 非饱和土的水分特征曲线的分形模型[J]. 岩土力学, 2002, 23(4): 400-405.
(XU Yong-fu, DONG Ping.Fractal model for the soil-water characteristics of unsaturated soils[J]. Rock and Soil Mechanics, 2002, 23(4): 400-405. (in Chinese)) |
[10] |
RUSSEL A R.How water retention in fractal soils depends on particle and pore sizes, shapes, volumes and surface areas[J]. Géotechnique, 2014, 64(5): 379-390.
|
[11] |
KHALILI N, KHOSHGHALB A, PASHA A Y.A fractal model for volume change dependency of the water retention curve[J]. Géotechnique, 2015, 65(2): 1-6.
|
[12] |
张超谟, 陈振标, 张占松, 等. 基于核磁共振
(ZHANG Chao-mo, CHEN Zhen-biao, ZHANG Zhan-song, et al.Fractal characteristics of reservoir rock pore structure based on NMR |
[13] |
陶高梁, 孔令伟, 肖衡林, 等. 土-水特征曲线的分形特性及其分析拟合[J]. 岩土力学, 2014, 35(9): 2443-2447.
(TAO Gao-liang, KONG Ling-wei, XIAO Heng-lin, et al.Fractal characteristics and fitting analysis of soil-water characteristic curves[J]. Rock and Soil Mechanics, 2014, 35(9): 2443-2447. (in Chinese)) |
[14] |
陶高梁, 柏亮, 袁波, 等. 土-水特征曲线与核磁共振曲线的关系[J]. 岩土力学, 2018, 39(3): 943-948.
(TAO Gao-liang, BAI Liang, YUAN Bo, et al.Study of relationship between soil-water characteristic curve and NMR curve[J]. Rock and Soil Mechanics, 2018, 39(3): 943-948. (in Chinese)) |
[15] |
孙德安. 非饱和土的水力和力学特性及其弹塑性描述[J]. 岩土力学, 2009, 30(11): 3217-3231.
(SUN De-an.Hydro-mechanical behaviours of unsaturated soils and their elastoplastic modelling[J]. Rock and Soil Mechanics, 2009, 30(11): 3217-3231. (in Chinese)) |
[16] |
KORRINGA J, SEEVERS D O, TORREY H C.Theory of spin pumping and relaxation in systems with a low concentration of electron spin resonance centers[J]. Physical Review, 1962, 127(4): 1143-1150.
|
[17] |
张季如, 陶高梁, 黄丽, 等. 表征孔隙孔径分布的岩土体孔隙率模型及其应用[J]. 科学通报, 2010, 55(27): 2761-2770.
(ZHANG Ji-ru, TAO Gao-liang, HUANG Li, et al.Porosity models for determining the pore-size distribution of rocks and soils and their applications[J]. Chinese Science Bulletin, 2010, 55(27): 2761-2770. (in Chinese)) |
[18] |
TAO G L, ZHANG J R.Two categories of fractal models of rock and soil expressing volume and size-distribution of pores and grains[J]. Chinese Science Bulletin, 2009, 54(23): 4458-4467.
|
[19] |
陶高梁, 李进, 庄心善, 等. 利用土中水分蒸发特性和微观孔隙分布规律确SWCC残余含水率[J]. 岩土力学, 2018, 39(4): 1256-1262.
(TAO Gao-liang, LI Jin, ZHUANG Xin-shan, et al.Determination of the SWCC residual water content based on the soil moisture evaporation properties and micro pore characteristics[J]. Rock and Soil Mechanics, 2018, 39(4): 1256-1262. (in Chinese)) |
[1] | LI Jian, LI Shichang, WU Gu, CHEN Shanxiong, YU Fei, DAI Zhangjun, ZHANG Yu. Soil water characteristics of coarse-grained accumulation soil and their prediction method[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 50-53. DOI: 10.11779/CJGE2023S10037 |
[2] | HUANG Xianwen, JIANG Pengming, ZHOU Aizhao, WANG Wei, TANG Chuxuan. Prediction model for soil permeability based on fractal characteristics of particles[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1907-1915. DOI: 10.11779/CJGE20220772 |
[3] | YE Yunxue, XU Fan, LIU Xiaowen, WU Junhua, DING Luqiang. Prediction of soil-water characteristic curves under drying path based on isotropic compression and soil shrinkage tests[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 847-854. DOI: 10.11779/CJGE20220065 |
[4] | ZHANG Yu-wei, SONG Zhan-ping, XIE Yong-li. Prediction model for soil-water characteristic curve of loess under porosity change[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2017-2025. DOI: 10.11779/CJGE202211007 |
[5] | WANG Lai-cai, HU Hai-jun, WANG Chen, KANG Shun-xiang. Measurement and prediction of water retention curve of remolded loess with different degrees of compaction[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 204-208. DOI: 10.11779/CJGE2021S1037 |
[6] | CAI Guo-qing, ZHANG Ce, LI Jian, ZHAO Cheng-gang. Prediction method for SWCC considering initial dry density[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 27-31. DOI: 10.11779/CJGE2018S2006 |
[7] | ZHANG Zhao, LIU Feng-yin, QI Ji-lin, CHAI Jun-rui, LI Hui-yong, LI Jian-jun. Physical approach to predict water retention curves for unsaturated soils based on particle-size distribution[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 241-246. DOI: 10.11779/CJGE2018S1039 |
[8] | ZHANG Zhao, LIU Feng-yin, LI Rong-jian, CHAI Jun-rui, GU Yu. New approach to predict relative air permeability based on water retention curve for unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 280-285. DOI: 10.11779/CJGE2016S2046 |
[9] | LIU Chen-hui, ZHOU Dong, WU Heng. Measurement and prediction of temperature effects of thermal conductivity of soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1877-1886. |
[10] | YE Weimin, QIAN Lixin, BAI Yun, CHEN Bao. Predicting coefficient of permeability from soil-water characteristic curve for Shanghai soft soil[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(11): 27-30. |
1. |
宋泽宇,蒲力,马云飞. 含有机质黏土全吸力范围内土-水特征曲线试验研究. 水力发电. 2024(10): 114-118 .
![]() | |
2. |
童富果,蔡文婧,薛松,刘刚,李东奇. 基于孔隙分形特征的水泥基毛细吸力预测模型. 水利水电科技进展. 2024(06): 27-33 .
![]() | |
3. |
幸锦雯,孙文,余光耀,徐娜,麻建宏. 基于核磁共振及分形理论预测非饱和土石混合体SWCC. 水利水电技术(中英文). 2023(10): 180-189 .
![]() | |
4. |
王海曼,倪万魁. 不同干密度压实黄土的饱和/非饱和渗透系数预测模型. 岩土力学. 2022(03): 729-736 .
![]() | |
5. |
魏小棋,陈盼. 压实延安黄土土-水特性及快速测定方法探讨. 土工基础. 2022(03): 446-450 .
![]() | |
6. |
王海曼,倪万魁,刘魁. 延安压实黄土土-水特征曲线的快速预测方法. 岩土力学. 2022(07): 1845-1853 .
![]() | |
7. |
刘莉,姜大伟,于明波,颜荣涛,于海浩,陈波. 千枚岩全风化土的持水特性研究. 河南科技大学学报(自然科学版). 2022(06): 53-58+8 .
![]() | |
8. |
高世壮,薛善彬,张鹏,李春云,王俊洁. 高温作用对应变硬化水泥基复合材料吸水性能及微结构演化特征的影响. 复合材料学报. 2022(10): 4778-4787 .
![]() | |
9. |
马冬冬,马芹永,黄坤,张蓉蓉. 基于NMR的地聚合物水泥土孔隙结构与动态力学特性研究. 岩土工程学报. 2021(03): 572-578 .
![]() |