• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YE Yunxue, XU Fan, LIU Xiaowen, WU Junhua, DING Luqiang. Prediction of soil-water characteristic curves under drying path based on isotropic compression and soil shrinkage tests[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 847-854. DOI: 10.11779/CJGE20220065
Citation: YE Yunxue, XU Fan, LIU Xiaowen, WU Junhua, DING Luqiang. Prediction of soil-water characteristic curves under drying path based on isotropic compression and soil shrinkage tests[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 847-854. DOI: 10.11779/CJGE20220065

Prediction of soil-water characteristic curves under drying path based on isotropic compression and soil shrinkage tests

More Information
  • Received Date: January 11, 2022
  • Available Online: April 16, 2023
  • Because the soil-water characteristic tests require professional instruments and are time-consuming, the application of soil-water characteristic curves (SWCCs) in engineering design is not popular. Taking three kinds of soils as the research objects, including silty sand, cohesive soil and expansive soil, a simple method is proposed to predict the SWCCs in drying path within the low suction range by performing the isotropic compression tests of saturated soil and shrinkage tests of soil in the laboratory. The research results show that based on the unified relationship between the effective stress and the deformation, the connection between the saturated soil and the unsaturated soil can be established. According to the soil shrinkage characteristic curves under different initial dry densities, the residual water content can be obtained quantitatively by using the curvature formula and the proposed mean value method. The SWCCs within the low suction range predicted by the proposed method are in good agreement with the experimental data obtained in this study. This work contributes to ensure that the unsaturated hydraulic parameters are obtained indirectly when it is necessary to carry out the conventional saturated soil tests.
  • [1]
    龚壁卫, 李青云, 文松霖. 非饱和土力学理论在南水北调工程中的应用[J]. 南水北调与水利科技, 2008, 6(1): 143-147. https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD200801044.htm

    GONG Biwei, LI Qingyun, WEN Songlin. Mechanics for unsaturated soils and its application in the south-to-north water transfer project[J]. South-to-North Water Transfers and Water Science & Technology, 2008, 6(1): 143-147. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD200801044.htm
    [2]
    包承纲. 非饱和土的性状及膨胀土边坡稳定问题[J]. 岩土工程学报, 2004, 26(1): 1-15. http://cge.nhri.cn/cn/article/id/11325

    BAO Chenggang. Behavior of unsaturated soil and stability of expansive soil slope[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 1-15. (in Chinese) http://cge.nhri.cn/cn/article/id/11325
    [3]
    徐捷, 王钊, 李未显. 非饱和土的吸力量测技术[J]. 岩石力学与工程学报, 2000, 19(增刊1): 905-909. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2000S1017.htm

    XU Jie, WANG Zhao, LI Weixian. The measuring techniques of unsaturated-soil suction[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(S1): 905-909. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2000S1017.htm
    [4]
    VANAPALLI S K, FREDLUND D G, PUFAHL D E. The influence of soil structure and stress history on the soil-water characteristics of a compacted till[J]. Géotechnique, 1999, 49(2): 143-159. doi: 10.1680/geot.1999.49.2.143
    [5]
    刘小文, 叶云雪. 不同影响因素下非饱和红土土水-特征曲线的试验研究[J]. 水文地质工程地质, 2015, 42(2): 97-104. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201502016.htm

    LIU Xiao-wen, YE Yun-xue. Experimental study of the soil-water characteristic curve of unsaturated laterite under different affecting factors[J]. Hydrogeology & Engineering Geology, 2015, 42(2): 97-104. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201502016.htm
    [6]
    孙德安, 高游. 不同制样方法非饱和土的持水特性研究[J]. 岩土工程学报, 2015, 37(1): 91-97. doi: 10.11779/CJGE201501010

    SUN Dean, GAO You. Water retention behaviour of soils with different preparations[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 91-97. (in Chinese) doi: 10.11779/CJGE201501010
    [7]
    THYAGARAJ T, RAO S M. Influence of osmotic suction on the soil-water characteristic curves of compacted expansive clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(12): 1695-1702. doi: 10.1061/(ASCE)GT.1943-5606.0000389
    [8]
    王协群, 邹维列, 骆以道, 等. 考虑压实度时的土水特征曲线和温度对吸力的影响[J]. 岩土工程学报, 2011, 33(3): 368-372. http://cge.nhri.cn/cn/article/id/13949

    WANG Xiequn, ZOU Weilie, LUO Yidao, et al. SWCCs and influence of temperature on matrix suction under different compaction degrees[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(3): 368-372. (in Chinese) http://cge.nhri.cn/cn/article/id/13949
    [9]
    BROOKS R H. Hydraulic Properties of Porous Media[M]. Fort Collins: Colorado State University, 1964.
    [10]
    VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898. doi: 10.2136/sssaj1980.03615995004400050002x
    [11]
    FREDLUND D G, XING A Q. Equations for the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 1994, 31(4): 521-532. doi: 10.1139/t94-061
    [12]
    YE Y X, ZOU W L, HAN Z, et al. Predicting the entire soil-water characteristic curve using measurements within low suction range[J]. Journal of Mountain Science, 2019, 16(5): 1198-1214.
    [13]
    WEBB S W. A simple extension of two-phase characteristic curves to include the dry region[J]. Water Resources Research, 2000, 36(6): 1425-1430.
    [14]
    ZHOU A N, SHENG D, CARTER J P. Modelling the effect of initial density on soil-water characteristic curves[J]. Géotechnique, 2012, 62(8): 669-680.
    [15]
    LU N, KAYA M. A drying cake method for measuring suction-stress characteristic curve, soil-water-retention curve, and hydraulic conductivity function[J]. Geotechnical Testing Journal, 2013, 36(1): 20120097.
    [16]
    CORNELIS W M, CORLUY J, MEDINA H, et al. Measuring and modelling the soil shrinkage characteristic curve[J]. Geoderma, 2006, 137(1/2): 179-191.
    [17]
    叶云雪, 邹维列, 韩仲, 等. 非饱和土孔隙比与基质吸力关系的通用模型[J]. 岩土工程学报, 2019, 41(5): 927-933. doi: 10.11779/CJGE201905016

    YE Yunxue, ZOU Weilie, HAN Zhong, et al. General model for relationship between void ratio and matric suction in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 927-933. (in Chinese) doi: 10.11779/CJGE201905016
    [18]
    BOIVIN P, GARNIER P, VAUCLIN M. Modeling the soil shrinkage and water retention curves with the same equations[J]. Soil Science Society of America Journal, 2006, 70(4): 1082-1093
    [19]
    BAUMGARTL T, KÖCK B. Modeling volume change and mechanical properties with hydraulic models[J]. Soil Science Society of America Journal, 2004, 68(1): 57-65.
    [20]
    谢定义, 冯志焱. 对非饱和土有效应力研究中若干基本观点的思辨[J]. 岩土工程学报, 2006, 28(2): 170-173. http://cge.nhri.cn/cn/article/id/11947

    XIE Dingyi, FENG Zhiyan. Consideration of some fundamental viewpoints in studying effective stress of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(2): 170-173. (in Chinese) http://cge.nhri.cn/cn/article/id/11947
    [21]
    邹维列, 王协群, 罗方德, 等. 等应力和等孔隙比状态下的土-水特征曲线[J]. 岩土工程学报, 2017, 39(9): 1711-1717. doi: 10.11779/CJGE201709020

    ZOU Weilie, WANG Xiequn, LUO Fangde, et al. Experimental study on SWCCs under equal stress and equal void ratio states[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1711-1717. (in Chinese) doi: 10.11779/CJGE201709020
    [22]
    BISHOP A W. The principle of effective stress[J]. Teknisk Ukeblad, 1959, 106(39): 859-863.
    [23]
    GROENEVELT P H, GRANT C D. Analysis of soil shrinkage data[J]. Soil and Tillage Research, 2004, 79(1): 71-77.
    [24]
    邢义川, 谢定义, 李振. 非饱和土的应力传递机理与有效应力原理[J]. 岩土工程学报, 2001, 23(1): 53-57. http://cge.nhri.cn/cn/article/id/10662

    XING Yichuan, XIE Dingyi, LI Zhen. Stress transmission mechanism and effective stress principle of unsaturated soil[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(1): 53-57. (in Chinese) http://cge.nhri.cn/cn/article/id/10662
    [25]
    COUSSY O, PEREIRA J M, VAUNAT J. Revisiting the thermodynamics of hardening plasticity for unsaturated soils[J]. Computers and Geotechnics, 2010, 37(1/2): 207-215.
    [26]
    NOWAMOOZ H, JAHANGIR E, MASROURI F, et al. Effective stress in swelling soils during wetting drying cycles[J]. Engineering Geology, 2016, 210: 33-44.
    [27]
    KHALILI N, ZARGARBASHI S. Influence of hydraulic hysteresis on effective stress in unsaturated soils[J]. Géotechnique, 2010, 60(9): 729-734.
    [28]
    LU N. Generalized soil water retention equation for adsorption and capillarity[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(10): 04016051.
    [29]
    LIKOS W J. Effective stress in unsaturated soil: accounting for surface tension and interfacial area[J]. Vadose Zone Journal, 2014, 13(5): 1-12.
  • Other Related Supplements

  • Cited by

    Periodical cited type(1)

    1. 柳伟,徐长节,胡世韬,朱怀龙. 降雨和库水位升降条件下考虑非饱和渗透系数空间变异的边坡可靠度分析. 土木与环境工程学报(中英文). 2024(03): 61-72 .

    Other cited types(2)

Catalog

    Article views (217) PDF downloads (64) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return