• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Zhaonan, WANG Gang. Coupled material point method and characteristic finite element method for saturated porous media[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 1094-1102. DOI: 10.11779/CJGE20220332
Citation: WANG Zhaonan, WANG Gang. Coupled material point method and characteristic finite element method for saturated porous media[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 1094-1102. DOI: 10.11779/CJGE20220332

Coupled material point method and characteristic finite element method for saturated porous media

More Information
  • Received Date: March 23, 2022
  • Available Online: May 18, 2023
  • The material point method (MPM) is a common approach to analyze the large deformation of the saturated porous media. However, the pore pressure oscillations caused by the weak-compressibility fluid, and the complication to apply the pressure boundary are the main challenges in the conventional explicit MPM. In this study, a novel algorithm, which couples the MPM and characteristic finite element method (FEM) for the saturated porous media with the incompressible fluid, is proposed. Inspired by the characteristic-based split (CBS) method, the characteristic-based procedure is applied to the temporal discretion of the fluid momentum equation to avoid the instability induced by the convective term, and the projection method is introduced to split the velocity and pressure in the solid and fluid phases. Several numerical tests, involving the consolidation of one-dimensional saturated soil column and the wave propagation in two-dimensional elastic foundation, are conducted to examine the performance of the proposed method. The simulated results agree with the reference solutions, which indicates that the new algorithm can greatly overcome the water pressure oscillation of the consolidation problem in comparison with the explicit MPM.
  • [1]
    ZIENKIEWICZ O C. Computational geomechanics with special reference to earthquake engineering[M]. Chichester: John Wiley, 1999.
    [2]
    HUANG M S, YUE Z Q, THAM L G, et al. On the stable finite element procedures for dynamic problems of saturated porous media[J]. International Journal for Numerical Methods in Engineering, 2004, 61(9): 1421-1450. doi: 10.1002/nme.1115
    [3]
    黄茂松, 魏星. 循环荷载饱和土动力学问题稳定有限元解法[J]. 岩土工程学报, 2005, 27(2): 173-177. doi: 10.3321/j.issn:1000-4548.2005.02.008

    HUANG Maosong, WEI Xing. Stabilized finite elements for dynamic problems of saturated soil subjected to cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(2): 173-177. (in Chinese) doi: 10.3321/j.issn:1000-4548.2005.02.008
    [4]
    SULSKY D, CHEN Z, SCHREYER H L. A particle method for history-dependent materials[J]. Computer Methods in Applied Mechanics and Engineering, 1994, 118(1/2): 179-196.
    [5]
    SOGA K, ALONSO E, YERRO A, et al. Trends in large-deformation analysis of landslide mass movements with particular emphasis on the material point method[J]. Géotechnique, 2016, 66(3): 248-273. doi: 10.1680/jgeot.15.LM.005
    [6]
    JIN Y F, YIN Z Y, LI J, et al. A novel implicit coupled hydro-mechanical SPFEM approach for modelling of delayed failure of cut slope in soft sensitive clay[J]. Computers and Geotechnics, 2021, 140: 104474. doi: 10.1016/j.compgeo.2021.104474
    [7]
    WANG L, ZHANG X, ZHANG S, et al. A generalized Hellinger-Reissner variational principle and its PFEM formulation for dynamic analysis of saturated porous media[J]. Computers and Geotechnics, 2021, 132: 103994. doi: 10.1016/j.compgeo.2020.103994
    [8]
    BUI H H, NGUYEN G D. Smoothed particle hydrodynamics (SPH) and its applications in geomechanics: From solid fracture to granular behaviour and multiphase flows in porous media[J]. Computers and Geotechnics, 2021, 138: 104315. doi: 10.1016/j.compgeo.2021.104315
    [9]
    WEN X, ZHAO W, WAN D. An improved moving particle semi-implicit method for interfacial flows[J]. Applied Ocean Research, 2021, 117: 102963. doi: 10.1016/j.apor.2021.102963
    [10]
    LIU X, WANG Y, LI D. Numerical simulation of the 1995 rainfall-induced Fei Tsui road landslide in Hong Kong: new insights from hydro-mechanically coupled material point method[J]. Landslides, 2020, 17: 2755-2775. doi: 10.1007/s10346-020-01442-2
    [11]
    YERRO A, ALONSO E E, PINYOL N M. Run-out of landslides in brittle soils[J]. Computers and Geotechnics, 2016, 80: 427-439. doi: 10.1016/j.compgeo.2016.03.001
    [12]
    YERRO A, ALONSO E E, PINYOL N M. The material point method for unsaturated soils[J]. Géotechnique, 2015, 65(3): 201-217. doi: 10.1680/geot.14.P.163
    [13]
    BANDARA S, SOGA K. Coupling of soil deformation and pore fluid flow using material point method[J]. Computers and Geotechnics, 2015, 63: 199-214. doi: 10.1016/j.compgeo.2014.09.009
    [14]
    张洪武, 王鲲鹏, 陈震. 基于物质点方法饱和多孔介质动力学模拟(Ⅰ): 耦合物质点方法[J]. 岩土工程学报, 2009, 31(10): 1505-1511. doi: 10.3321/j.issn:1000-4548.2009.10.005

    ZHANG Hongwu, WANG Kunpeng, CHEN Zhen. Material point method for dynamic analysis of saturated porous media (Ⅰ): coupling material point method[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(10): 1505-1511. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.10.005
    [15]
    张洪武, 王鲲鹏, 陈震. 基于物质点方法饱和多孔介质动力学模拟(Ⅱ): 饱和多孔介质与固体间动力接触分析[J]. 岩土工程学报, 2009, 31(11): 1672-1679. doi: 10.3321/j.issn:1000-4548.2009.11.005

    ZHANG Hongwu, WANG Kunpeng, CHEN Zhen. Material point method for dynamic analysis of saturated porous media (Ⅱ): dynamic contact analysis between saturated porous media and solid bodies[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(11): 1672-1679. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.11.005
    [16]
    张洪武, 王鲲鹏. 基于物质点方法饱和多孔介质动力学模拟(Ⅲ): 两相物质点方法[J]. 岩土工程学报, 2010, 32(4): 507-513. http://www.cgejournal.com/cn/article/id/12438

    ZHANG Hongwu, WANG Kunpeng. Material point method for dynamic analysis of saturated porous media (Ⅲ): two-phase material point method[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(4): 507-513. (in Chinese) http://www.cgejournal.com/cn/article/id/12438
    [17]
    BECACHE E, RODRIGUEZ J, TSOGKA C. The finite element method with Lagrangian multipliers[J]. Numerische Mathematik, 1973, 20(3): 179-192. doi: 10.1007/BF01436561
    [18]
    YANG J, YIN Z Y, LAOUAFA F, et al. Three-dimensional hydromechanical modeling of internal erosion in dike-on-foundation[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2020, 44(8): 1200-1218. doi: 10.1002/nag.3057
    [19]
    YANG J, YIN Z Y, LAOUAFA F, et al. Analysis of suffusion in cohesionless soils with randomly distributed porosity and fines content[J]. Computers and Geotechnics, 2019, 111: 157-171. doi: 10.1016/j.compgeo.2019.03.011
    [20]
    GAWIN D, SCHREFLER B A, GALINDO M. Thermo- hydro-mechanical analysis of partially saturated porous materials[J]. Engineering Computations, 1996, 13(7): 113-143. doi: 10.1108/02644409610151584
    [21]
    SCHREFLER B A, ZHAN X Y, SIMONI L. A coupled model for water flow, airflow and heat flow in deformable porous media[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 1995, 5(6): 531-547.
    [22]
    PAN S Y, YAMAGUCHI Y, SUPPASRI A, et al. MPM-FEM hybrid method for granular mass-water interaction problems[J]. Computational Mechanics, 2021, 68(1): 155-173. doi: 10.1007/s00466-021-02024-2
    [23]
    HEINRICH J C, HUYAKORN P S, ZIENKIEWICZ O C, et al. An 'Upwind' finite element scheme for two-dimensional convective transport equation[J]. International Journal for Numerical Methods in Engineering, 1977, 11(1): 131-143. doi: 10.1002/nme.1620110113
    [24]
    HEINRICH J C, ZIENKIEWICZ O C. Quadratic finite element schemes for two-dimensional convective-transport problems[J]. International Journal for Numerical Methods in Engineering, 1977, 11(12): 1831-1844. doi: 10.1002/nme.1620111207
    [25]
    LÖHNER R, MORGAN K, ZIENKIEWICZ O C. The solution of non-linear hyperbolic equation systems by the finite element method[J]. International Journal for Numerical Methods in Fluids, 1984, 4(11): 1043-1063. doi: 10.1002/fld.1650041105
    [26]
    YAMAGUCHI Y, TAKASE S, MORIGUCHI S, et al. Solid-liquid coupled material point method for simulation of ground collapse with fluidization[J]. Computational Particle Mechanics, 2020, 7(2): 209-223. doi: 10.1007/s40571-019-00249-w
    [27]
    KULARATHNA S, LIANG W J, ZHAO T C, et al. A semi-implicit material point method based on fractional-step method for saturated soil[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2021, 45(10): 1405-1436. doi: 10.1002/nag.3207
    [28]
    CHORIN A J. Numerical solution of the Navier-Stokes equations[J]. Mathematics of Computation, 1968, 22(104): 745-762. doi: 10.1090/S0025-5718-1968-0242392-2
    [29]
    ZIENKIEWICZ O C, TAYLOR R L, NITHIARASU P. The Finite Element Method for Fluid Dynamics[M]. Oxford: Butterworth-Heinemann, 2014.
    [30]
    GAN Y, SUN Z, CHEN Z, et al. Enhancement of the material point method using B-spline basis functions[J]. International Journal for Numerical Methods in Engineering, 2018, 113(3): 411-431. doi: 10.1002/nme.5620
    [31]
    KARL T. Theoretical Soil Mechanics[M]. Hoboken: John Wiley & Sons, Inc., 1943.
    [32]
    BREUER S. Quasi-static and dynamic behavior of saturated porous media with incompressible constituents[M]//Porous Media: Theory and Experiments. Dordrecht: Springer Netherlands, 1999.
    [33]
    MARKERT B, HEIDER Y, EHLERS W. Comparison of monolithic and splitting solution schemes for dynamic porous media problems[J]. International Journal for Numerical Methods in Engineering. 2010, 82(11): 1341-1383.
    [34]
    SOGA K, KULARATHNA S. Solving dynamic soil deformation-fluid flow coupling problems using material point method[M]// Challenges and Innovations in Geomechanics. Cham: Springer International Publishing, 2021.
  • Related Articles

    [1]WANG Zhaonan, WANG Gang, JIN Wei. Simulation of backward erosion piping based on coupled material point-characteristic finite element method[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(6): 1318-1324. DOI: 10.11779/CJGE20230207
    [2]WANG Jun-jie, FENG Deng, CHAI He-jun, LIU Yun-fei. Dominant discontinuities based on stereographic projection and K-means clustering algorithm[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 74-81. DOI: 10.11779/CJGE201801006
    [3]WEN Yong, YANG Guang-hua, TANG Lian-sheng, LI Zhi-yun, HUANG Zhi-xing, ZHANG Yu-cheng. Tangent modulus method based on in-situ pressuremeter tests and its preliminary validation[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(s1): 121-125. DOI: 10.11779/CJGE2017S1024
    [4]GUO Yong-cheng, LI Jian-lin, WANG Xing-xia. Finite element analysis of entrance slope of expansion project of Huanglongtan Power Plant[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 202-206.
    [5]LI Liang, ZHAI Wei, DU Xiu-li. Time-domain explicit finite element method for wave propagation of transversely isotropic fluid-saturated porous media[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(3): 464-476.
    [6]WANG Yu, WANG Chun-lei, WANG Can, CAO Qiang, YU Hong-ming. Reliability evaluation of slopes based on vector projection response surface and its application[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(9): 1434-1439.
    [7]XU Fei, XU Weiya. Projection pursuit model based on particle swarm optimization for rock burst prediction[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(5).
    [8]WANG Mingwu, JIN Juliang. Application of projection pursuit method to assessment of slope stability[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(5): 619-621.
    [9]ZHAO Chenggang, WANG Jinting, SHI Peixin, LI Weihua. Dynamic analysis of fluid-saturated porous media by using explicit finite element method[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(2): 178-182.
    [10]Li Xikui, Wu Wenhua. Miscible pollutant transport model for unsaturated soils and characteristic finite element method[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(4): 427-437.
  • Cited by

    Periodical cited type(2)

    1. 王兆南,王刚,金伟. 基于物质点-特征有限元耦合方法的向后侵蚀管涌模拟. 岩土工程学报. 2024(06): 1318-1324 . 本站查看
    2. 王曼灵,李树忱,周慧颖,王修伟,彭科峰,袁超. 基于改进对流粒子域插值物质点法的隧道大变形分析. 岩土工程学报. 2024(08): 1632-1643 . 本站查看

    Other cited types(0)

Catalog

    Article views (332) PDF downloads (89) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return