Citation: | WANG Zhaonan, WANG Gang, JIN Wei. Simulation of backward erosion piping based on coupled material point-characteristic finite element method[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(6): 1318-1324. DOI: 10.11779/CJGE20230207 |
[1] |
VAN BEEK V M, BEZUIJEN A, SELLMEIJER J B, et al. Initiation of backward erosion piping in uniform sands[J]. Géotechnique, 2014, 64(12): 927-941. doi: 10.1680/geot.13.P.210
|
[2] |
ROBBINS B A, VAN BEEK V M, LÓPEZ-SOTO J F, et al. A novel laboratory test for backward erosion piping[J]. International Journal of Physical Modelling in Geotechnics, 2018, 18(5): 266-279. doi: 10.1680/jphmg.17.00016
|
[3] |
VANDENBOER K, DOLPHEN L, BEZUIJEN A. Backward erosion piping through vertically layered soils[J]. European Journal of Environmental and Civil Engineering, 2019, 23(11): 1404-1412. doi: 10.1080/19648189.2017.1373708
|
[4] |
ROBBINS B A, MONTALVO-BARTOLOMEI A M, GRIFFITHS D V. Analyses of backward erosion progression rates from small-scale flume experiments[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(9): 04020093. doi: 10.1061/(ASCE)GT.1943-5606.0002338
|
[5] |
VANDENBOER K, VAN BEEK V M, BEZUIJEN A. 3D character of backward erosion piping[J]. Géotechnique, 2018, 68(1): 86-90. doi: 10.1680/jgeot.16.P.091
|
[6] |
POL J C, KANNING W, BEEK V M, et al. Temporal evolution of backward erosion piping in small-scale experiments[J]. Acta Geotechnica, 2022, 17(10): 4555-4576. doi: 10.1007/s11440-022-01545-1
|
[7] |
AKRAMI S, BEZUIJEN A, VAN BEEK V, et al. Analysis of development and depth of backward erosion pipes in the presence of a coarse sand barrier[J]. Acta Geotechnica, 2021, 16(2): 381-397. doi: 10.1007/s11440-020-01053-0
|
[8] |
VANDENBOER K, VAN BEEK V M, BEZUIJEN A. Analysis of the pipe depth development in small-scale backward erosion piping experiments[J]. Acta Geotechnica, 2019, 14(2): 477-486. doi: 10.1007/s11440-018-0667-0
|
[9] |
VAN BEEK V M, VAN ESSEN H M, VANDENBOER K, et al. Developments in modelling of backward erosion piping[J]. Géotechnique, 2015, 65(9): 740-754. doi: 10.1680/geot.14.P.119
|
[10] |
BRIAUD J L, GOVINDASAMY A V, SHAFII I. Erosion charts for selected geomaterials[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2017, 143(10): 04017072. doi: 10.1061/(ASCE)GT.1943-5606.0001771
|
[11] |
周晓杰, 丁留谦, 姚秋玲, 等. 悬挂式防渗墙控制堤基渗透变形发展模型试验[J]. 水力发电学报, 2007, 26(2): 54-59. doi: 10.3969/j.issn.1003-1243.2007.02.011
ZHOU Xiaojie, DING Liuqian, YAO Qiuling, et al. Laboratory model test for evolution of seepage deformation controlled by means of suspended cut-off wall in foundation of dike[J]. Journal of Hydroelectric Engineering, 2007, 26(2): 54-59. (in Chinese) doi: 10.3969/j.issn.1003-1243.2007.02.011
|
[12] |
ZHOU X J, JIE Y X, LI G X. Numerical simulation of the developing course of piping[J]. Computers and Geotechnics, 2012, 44: 104-108. doi: 10.1016/j.compgeo.2012.03.010
|
[13] |
FASCETTI A, OSKAY C. Dual random lattice modeling of backward erosion piping[J]. Computers and Geotechnics, 2019, 105: 265-276. doi: 10.1016/j.compgeo.2018.08.018
|
[14] |
ROBBINS B A, GRIFFITHS D V. A two-dimensional, adaptive finite element approach for simulation of backward erosion piping[J]. Computers and Geotechnics, 2021, 129: 103820. doi: 10.1016/j.compgeo.2020.103820
|
[15] |
LIANG Y, YEH T C J, WANG J J, et al. An auto-adaptive moving mesh method for the numerical simulation of piping erosion[J]. Computers and Geotechnics, 2017, 82: 237-248. doi: 10.1016/j.compgeo.2016.10.011
|
[16] |
WANG Y A, NI X D. Hydro-mechanical analysis of piping erosion based on similarity criterion at micro-level by PFC3D[J]. European Journal of Environmental and Civil Engineering, 2013, 17(S1): 187-204.
|
[17] |
TRAN D K, PRIME N, FROIIO F, et al. Numerical modelling of backward front propagation in piping erosion by DEM-LBM coupling[J]. European Journal of Environmental and Civil Engineering, 2017, 21(7/8): 960-987.
|
[18] |
FROIIO F, CALLARI C, ROTUNNO A F. A numerical experiment of backward erosion piping: kinematics and micromechanics[J]. Meccanica, 2019, 54(14): 2099-2117 doi: 10.1007/s11012-019-01071-7
|
[19] |
RAHIMI M, SHAFIEEZADEH A. Coupled backward erosion piping and slope instability performance model for levees[J]. Transportation Geotechnics, 2020, 24: 100394. doi: 10.1016/j.trgeo.2020.100394
|
[20] |
ROTUNNO A F, CALLARI C, FROIIO F. A finite element method for localized erosion in porous media with applications to backward piping in levees[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2019, 43(1): 293-316. doi: 10.1002/nag.2864
|
[21] |
FUJISAWA K, MURAKAMI A, NISHIMURA S I. Numerical analysis of the erosion and the transport of fine particles within soils leading to the piping phenomenon[J]. Soils and Foundations, 2010, 50(4): 471-482. doi: 10.3208/sandf.50.471
|
[22] |
ZHANG X S, WONG H, LEO C J, et al. A thermodynamics-based model on the internal erosion of earth structures[J]. Geotechnical and Geological Engineering, 2013, 31(2): 479-492. doi: 10.1007/s10706-012-9600-8
|
[23] |
WEWER M, AGUILAR-LÓPEZ J P, KOK M, et al. A transient backward erosion piping model based on laminar flow transport equations[J]. Computers and Geotechnics, 2021, 132: 103992. doi: 10.1016/j.compgeo.2020.103992
|
[24] |
LEI X Q, HE S M, CHEN X Q, et al. A generalized interpolation material point method for modelling coupled seepage-erosion-deformation process within unsaturated soils[J]. Advances in Water Resources, 2020, 141: 103578. doi: 10.1016/j.advwatres.2020.103578
|
[25] |
LIANG D F, ZHAO X Y, SOGA K. Simulation of overtopping and seepage induced dike failure using two-point MPM[J]. Soils and Foundations, 2020, 60(4): 978-988. doi: 10.1016/j.sandf.2020.06.004
|
[26] |
CECCATO F, YERRO A, GIRARDI V, et al. Two-phase dynamic MPM formulation for unsaturated soil[J]. Computers and Geotechnics, 2021, 129: 103876. doi: 10.1016/j.compgeo.2020.103876
|
[27] |
王兆南, 王刚. 饱和孔隙介质的耦合物质点-特征有限元方法[J]. 岩土工程学报, 2023, 45(5): 1094-1102. doi: 10.11779/CJGE20220332
WANG Zhaonan, WANG Gang. Coupled material point method and characteristic finite element method for saturated porous media[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 1094-1102. (in Chinese) doi: 10.11779/CJGE20220332
|
[28] |
ZIENKIEWICZ O C, TAYLOR R L, NITHIARASU P. The Finite Element Method for Fluid Dynamics (Seventh Edition)[M]. Oxford: Butterworth-Heinemann, 2014.
|
[29] |
ABAQUS G. Abaqus 6.11[M]. Providence: Dassault Systemes Simulia Corporation, 2011.
|
[30] |
ROBBINS B A, VAN BEEK V M, POL J C, et al. Errors in finite element analysis of backward erosion piping[J]. Geomechanics for Energy and the Environment, 2022, 31: 100331. doi: 10.1016/j.gete.2022.100331
|
1. |
郭帅. 反向侵蚀引发管涌的实验与数值分析研究. 水利技术监督. 2025(01): 200-204 .
![]() | |
2. |
邱松楠,黎晓冬,周鹏展. 渗透破坏作用下管涌土强度劣化机制及预测模型. 长江科学院院报. 2025(01): 186-193+207 .
![]() |