Citation: | WANG Manling, LI Shuchen, ZHOU Huiying, WANG Xiuwei, PENG Kefeng, YUAN Chao. Improved convective particle domain interpolation material point method for large deformation analysis of tunnels[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1632-1643. DOI: 10.11779/CJGE20230676 |
[1] |
张成平, 张顶立, 王梦恕, 等. 城市隧道施工诱发的地面塌陷灾变机制及其控制[J]. 岩土力学, 2010, 31(增刊1): 303-309. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2010S1050.htm
ZHANG Chengping, ZHANG Dingli, WANG Mengshu, et al. Catastrophe mechanism and control technology of ground collapse induced by urban tunneling[J]. Rock and Soil Mechanics, 2010, 31(S1): 303-309. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2010S1050.htm
|
[2] |
SULSKY D, CHEN Z, SCHREYER H L. A particle method for history-dependent materials[J]. Computer Methods in Applied Mechanics and Engineering, 1994, 18(1/2): 179-196.
|
[3] |
SULSKY D, ZHOU S J, SCHREYER H L. Application of a particle-in-cell method to solid mechanics[J]. Computer Physics Communications, 1995, 87(1/2): 236-252.
|
[4] |
HARLOW F H. The Particle-in-cell Method for Numerical Solution of Problems in Fluid Dynamics[R]. Los Alamos: Los Alamos National Lab, 1962.
|
[5] |
BRACKBILL J U, KOTHE D B, RUPPEL H M. Flip: a low-dissipation, particle-in-cell method for fluid flow[J]. Computer Physics Communications, 1988, 48(1): 25-38. doi: 10.1016/0010-4655(88)90020-3
|
[6] |
BRACKBILL J U, RUPPEL H M. FLIP: a method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions[J]. Journal of Computational Physics, 1986, 65(2): 314-343. doi: 10.1016/0021-9991(86)90211-1
|
[7] |
BANDARA S, SOGA K. Coupling of soil deformation and pore fluid flow using material point method[J]. Computers and Geotechnics, 2015, 63: 199-214. doi: 10.1016/j.compgeo.2014.09.009
|
[8] |
CUOMO S, PERNA A D, MARTINELLI M. Material point method (MPM) hydro-mechanical modelling of flows impacting rigid walls[J]. Canadian Geotechnical Journal, 2021, 58: 1730-1743. doi: 10.1139/cgj-2020-0344
|
[9] |
王兆南, 王刚. 饱和孔隙介质的耦合物质点-特征有限元方法[J]. 岩土工程学报, 2023, 45(5): 1094-1102. doi: 10.11779/CJGE20220332
WANG Zhaonan, WANG Gang. Coupled material point method and characteristic finite element method for saturated porous media[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 1094-1102. (in Chinese) doi: 10.11779/CJGE20220332
|
[10] |
孙玉进, 宋二祥. 大位移滑坡形态的物质点法模拟[J]. 岩土工程学报, 2015, 37(7): 1218-1225. doi: 10.11779/CJGE201507007
SUN Yujin, SONG Erxiang. Simulation of large-displacement landslide by material point method[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(7): 1218-1225. (in Chinese) doi: 10.11779/CJGE201507007
|
[11] |
钟祖良, 贺凯源, 宋宜祥, 等. 基于仿射速度矩阵改进物质点法的大位移滑坡研究[J]. 岩土工程学报, 2022, 44(9): 1626-1634. doi: 10.11779/CJGE202209007
ZHONG Zuliang, HE Kaiyuan, SONG Yixiang, et al. Large-displacement landslides based on affine velocity matrix-improved material point method[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1626-1634. (in Chinese) doi: 10.11779/CJGE202209007
|
[12] |
CUOMO S, PERNA A D, MARTINELLI M. Modelling the spatio-temporal evolution of a rainfall-induced retrogressive landslide in an unsaturated slope[J]. Engineering Geology, 2021, 294: 106371. doi: 10.1016/j.enggeo.2021.106371
|
[13] |
CORTIS M, COOMBS W, AUGARDE C, BROWN M, BRENNAN A, ROBINSON S. Imposition of essential boundary conditions in the material point method[J]. International Journal for Numerical Methods in Engineering, 2018, 113: 130-152. doi: 10.1002/nme.5606
|
[14] |
BARDENHAGEN S G, KOBER E M. The Generalized interpolation material point method[J]. Computer Modeling in Engineering and Sciences, 2004, 5(6): 477-495.
|
[15] |
SADEGHIRAD A, BRANNON R M, BURGHARDT J. A convected particle domain interpolation technique to extend applicability of the material point method for problems involving massive deformations[J]. International Journal for Numerical Methods in Engineering, 2011, 86(12): 1435-1456. doi: 10.1002/nme.3110
|
[16] |
SADEGHIRAD A, BRANNON R M, GUILKEY J E. Second-order convected particle domain interpolation (CPDI2) with enrichment for weak discontinuities at material interfaces[J]. International Journal for Numerical Methods in Engineering, 2013, 95(11): 928-952. doi: 10.1002/nme.4526
|
[17] |
PRUIJN N S. The improvement of the Material Point Method by Increasing Efficiency and Accuracy[D]. Delft: Delft University of Technology, 2016.
|
[18] |
STEFFEN M, KIRBY R M, BERZINS M. Analysis and reduction of quadrature errors in the material point method (MPM)[J]. International Journal for Numerical Methods in Engineering, 2008, 76(6): 922-948. doi: 10.1002/nme.2360
|
[19] |
STEFFEN M, WALLSTEDT P C, GUILKEY J E, et al. Examination and analysis of implementation choices within the material point method (MPM)[J]. Computer Modeling in Engineering and Sciences, 2008, 31(2): 107-127.
|
[20] |
HU Y M, FANG Y, GE Z H, et al. A moving least squares material point method with displacement discontinuity and two-way rigid body coupling[J]. ACM Transactions on Graphics, 2018, 37(4): 1-14.
|
[21] |
SONG J U, KIM H G. An improved material point method using moving least square shape functions[J]. Computational Particle Mechanics, 2021, 8(4): 751-766. doi: 10.1007/s40571-020-00368-9
|
[22] |
WANG J F, SUN F X, CHENG Y M. An improved interpolating element-free Galerkin method with a nonsingular weight function for two-dimensional potential problems[J]. Chinese Physics B, 2012, 21(9): 090204. doi: 10.1088/1674-1056/21/9/090204
|
[23] |
WANG J F, WANG J F, SUN F, et al. An interpolating boundary element-free method with nonsingular weight function for two-dimensional potential problems[J]. International Journal of Computational Methods, 2013, 10(6): 1350043. doi: 10.1142/S0219876213500436
|
[24] |
WANG Q, ZHOU W, FENG Y T, et al. An adaptive orthogonal improved interpolating moving least-square method and a new boundary element-free method[J]. Applied Mathematics and Computation, 2019, 353: 347-370. doi: 10.1016/j.amc.2019.02.013
|
[25] |
MIRZAEI D. Analysis of moving least squares approximation revisited[J]. Journal of Computational and Applied Mathematics, 2015, 282: 237-250. doi: 10.1016/j.cam.2015.01.007
|
[26] |
TRAN Q A, SOŁOWSKI W, BERZINS M, et al. A convected particle least square interpolation material point method[J]. International Journal for Numerical Methods in Engineering, 2019, 121(6): 1068-1100.
|
[27] |
WALLSTEDT P C, GUILKEY J E. An evaluation of explicit time integration schemes for use with the generalized interpolation material point method[J]. Journal of Computational Physics, 2008, 227(22): 9628-9642. doi: 10.1016/j.jcp.2008.07.019
|
[28] |
WYSER E, ALKHIMENKOV Y, JABOYEDOFF M, et al. A fast and efficient MATLAB-based MPM solver: fMPMM-solver v1.1[J]. Geoscientific Model Development, 2020, 13(12): 6265-6284. doi: 10.5194/gmd-13-6265-2020
|
[29] |
COOMBS W M, AUGARDE C. AMPLE: a material point learning environment[J]. Advances in Engineering Software, 2020, 139: 102748. doi: 10.1016/j.advengsoft.2019.102748
|
[30] |
LUBE G, HUPPERT H E, SPARKS R S J, et al. Collapses of two-dimensional granular columns[J]. Physical Review E Statistical, Nonlinear, Biological and Soft Matter Physics, 2005, 72(4): 041301. doi: 10.1103/PhysRevE.72.041301
|
[31] |
LUBE G, HUPPERT H E, SPARKS R S J, et al. Static and flowing regions in granular collapses down channels: insights from a sedimenting shallow water model[J]. Physics of Fluids, 2007, 19(10): 106601. doi: 10.1063/1.2773738
|
[32] |
KAMATA H, MASHIMO H. Centrifuge model test of tunnel face reinforcement by bolting[J]. Tunnelling and Underground Space Technology, 2003, 18(2/3): 205-212.
|
[33] |
CHENG X S, ZHENG G, SOGA K, et al. Post-failure behavior of tunnel heading collapse by MPM simulation[J]. Science China Technological Sciences, 2015, 58(12): 2139-2153. doi: 10.1007/s11431-015-5874-4
|
[34] |
ZHANG Y J, ZHANG W G, XIA H S, et al. Case study and risk assessment of water inrush disaster in Qingdao Metro Line 4[J]. Applied Sciences, 2023, 13: 3384. doi: 10.3390/app13063384
|
[35] |
YAN F Y, QIU W G, SUN K G, et al. Investigation of a large ground collapse, water inrush and mud outburst, and countermeasures during subway excavation in Qingdao: a case study[J]. Tunnelling and Underground Space Technology, 2021, 117: 104127. doi: 10.1016/j.tust.2021.104127
|
[1] | ZHAO Futang, WU Qixin, ZHENG Junjie, ZHENG Yewei. Generalized shear strain-based model for development of excess pore water pressure in saturated sand under anisotropic consolidation[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 315-323. DOI: 10.11779/CJGE20231122 |
[2] | TANG Zhao-guang, WANG Yong-zhi, WANG Meng-wei, SUN Rui, LIU Yuan-peng, YANG yang. Incremental model for pore water pressure and its applicability in centrifuge modelling[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 25-29. DOI: 10.11779/CJGE2022S2006 |
[3] | WANG Zhi-hua, HE Jian, GAO Hong-mei, WANG Bing-hui, SHEN Ji-rong. Dynamic pore water pressure model for liquefiable soils based on theory of thixotropic fluid[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2332-2340. DOI: 10.11779/CJGE201812023 |
[4] | WANG Xiang-ying, LIU Han-long, JIANG Qiang, CHEN Yu-min. Field tests on response of excess pore water pressures of liquefaction resistant rigid-drainage pile[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 645-651. DOI: 10.11779/CJGE201704008 |
[5] | CAO Zhen-zhong, LIU Hui-da, YUAN Xiao-ming. Liquefaction characteristics and mechanism of gravelly soils[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1165-1174. DOI: 10.11779/CJGE201607001 |
[6] | ZHOU En-quan, WANG Zhi-hua, CHEN Guo-xing, LÜ Cong. Constitutive model for fluid of post-liquefied sand[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 112-118. DOI: 10.11779/CJGE201501013 |
[7] | WANG Zhi-hua, LÜ Cong, XU Zhen-wei, ZHOU En-quan, CHEN Guo-xing. Thixotropy induced by vibration pore water pressure of saturated sands under cyclic loadings[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1831-1837. DOI: 10.11779/CJGE201410010 |
[8] | WANG Jun, CAI Yuan-qiang, GUO Lin, YANG Fang. Pore pressure and strain development of Wenzhou saturated soft soil under cyclic loading by stages[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1349-1354. |
[9] | WANG Zhi-hua, ZHOU En-quan, CHEN Guo-xing. Fluid characteristics dependent on excess pore water pressure of saturated sand after growth of pore pressure[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(3): 528-533. |
[10] | CHEN Guoxing, LIU Xuezhu. Study on dynamic pore water pressure in silty clay interbedded with fine sand of Nanjing[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 79-82. |