• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Manling, LI Shuchen, ZHOU Huiying, WANG Xiuwei, PENG Kefeng, YUAN Chao. Improved convective particle domain interpolation material point method for large deformation analysis of tunnels[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1632-1643. DOI: 10.11779/CJGE20230676
Citation: WANG Manling, LI Shuchen, ZHOU Huiying, WANG Xiuwei, PENG Kefeng, YUAN Chao. Improved convective particle domain interpolation material point method for large deformation analysis of tunnels[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1632-1643. DOI: 10.11779/CJGE20230676

Improved convective particle domain interpolation material point method for large deformation analysis of tunnels

More Information
  • Received Date: July 17, 2023
  • Available Online: December 19, 2023
  • The material point method (MPM) has good effects in simulating large deformation problems. However, the conventional MPM suffers from cell-crossing errors when particles cross grid boundaries, resulting in reduced accuracy. In order to overcome the cell-crossing errors of the conventional MPM, an improved convective particle domain interpolation material point method (CPDI) is proposed based on the conventional CPDI framework and the adaptive orthogonal improved interpolation moving least squares method (AOIIMLS). By constructing weighted orthogonal basis functions and disregarding the minimal or zero elements in the new diagonal matrix, the inverse matrix computation is avoided, and the robustness is enhanced. In the improved CPDI method, the particle domain velocity field is calculated using the velocity gradients, and the AOIIMLS shape functions are employed to reconstruct the background grid velocity function using the particle velocity and particle domain corner point velocity. The accuracy and applicability of the improved CPDI method are verified through simulations of various scenarios such as the compaction of a one-dimensional column under self-weight, the collapse of a sand column and the centrifuge tests on tunnel collapse. The results show that the improved CPDI method reduces the cell-crossing errors caused by the particles cross grid boundaries and achieves higher accuracy. Finally, the improved CPDI method is employed to simulate the whole process of ground collapse in the Jinggang Road Station–Shazikou Station tunnel section of Qingdao Metro Line 4, effectively confirming the applicability and advantages of the method in addressing large deformation problems in geotechnical engineering.
  • [1]
    张成平, 张顶立, 王梦恕, 等. 城市隧道施工诱发的地面塌陷灾变机制及其控制[J]. 岩土力学, 2010, 31(增刊1): 303-309. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2010S1050.htm

    ZHANG Chengping, ZHANG Dingli, WANG Mengshu, et al. Catastrophe mechanism and control technology of ground collapse induced by urban tunneling[J]. Rock and Soil Mechanics, 2010, 31(S1): 303-309. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2010S1050.htm
    [2]
    SULSKY D, CHEN Z, SCHREYER H L. A particle method for history-dependent materials[J]. Computer Methods in Applied Mechanics and Engineering, 1994, 18(1/2): 179-196.
    [3]
    SULSKY D, ZHOU S J, SCHREYER H L. Application of a particle-in-cell method to solid mechanics[J]. Computer Physics Communications, 1995, 87(1/2): 236-252.
    [4]
    HARLOW F H. The Particle-in-cell Method for Numerical Solution of Problems in Fluid Dynamics[R]. Los Alamos: Los Alamos National Lab, 1962.
    [5]
    BRACKBILL J U, KOTHE D B, RUPPEL H M. Flip: a low-dissipation, particle-in-cell method for fluid flow[J]. Computer Physics Communications, 1988, 48(1): 25-38. doi: 10.1016/0010-4655(88)90020-3
    [6]
    BRACKBILL J U, RUPPEL H M. FLIP: a method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions[J]. Journal of Computational Physics, 1986, 65(2): 314-343. doi: 10.1016/0021-9991(86)90211-1
    [7]
    BANDARA S, SOGA K. Coupling of soil deformation and pore fluid flow using material point method[J]. Computers and Geotechnics, 2015, 63: 199-214. doi: 10.1016/j.compgeo.2014.09.009
    [8]
    CUOMO S, PERNA A D, MARTINELLI M. Material point method (MPM) hydro-mechanical modelling of flows impacting rigid walls[J]. Canadian Geotechnical Journal, 2021, 58: 1730-1743. doi: 10.1139/cgj-2020-0344
    [9]
    王兆南, 王刚. 饱和孔隙介质的耦合物质点-特征有限元方法[J]. 岩土工程学报, 2023, 45(5): 1094-1102. doi: 10.11779/CJGE20220332

    WANG Zhaonan, WANG Gang. Coupled material point method and characteristic finite element method for saturated porous media[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 1094-1102. (in Chinese) doi: 10.11779/CJGE20220332
    [10]
    孙玉进, 宋二祥. 大位移滑坡形态的物质点法模拟[J]. 岩土工程学报, 2015, 37(7): 1218-1225. doi: 10.11779/CJGE201507007

    SUN Yujin, SONG Erxiang. Simulation of large-displacement landslide by material point method[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(7): 1218-1225. (in Chinese) doi: 10.11779/CJGE201507007
    [11]
    钟祖良, 贺凯源, 宋宜祥, 等. 基于仿射速度矩阵改进物质点法的大位移滑坡研究[J]. 岩土工程学报, 2022, 44(9): 1626-1634. doi: 10.11779/CJGE202209007

    ZHONG Zuliang, HE Kaiyuan, SONG Yixiang, et al. Large-displacement landslides based on affine velocity matrix-improved material point method[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1626-1634. (in Chinese) doi: 10.11779/CJGE202209007
    [12]
    CUOMO S, PERNA A D, MARTINELLI M. Modelling the spatio-temporal evolution of a rainfall-induced retrogressive landslide in an unsaturated slope[J]. Engineering Geology, 2021, 294: 106371. doi: 10.1016/j.enggeo.2021.106371
    [13]
    CORTIS M, COOMBS W, AUGARDE C, BROWN M, BRENNAN A, ROBINSON S. Imposition of essential boundary conditions in the material point method[J]. International Journal for Numerical Methods in Engineering, 2018, 113: 130-152. doi: 10.1002/nme.5606
    [14]
    BARDENHAGEN S G, KOBER E M. The Generalized interpolation material point method[J]. Computer Modeling in Engineering and Sciences, 2004, 5(6): 477-495.
    [15]
    SADEGHIRAD A, BRANNON R M, BURGHARDT J. A convected particle domain interpolation technique to extend applicability of the material point method for problems involving massive deformations[J]. International Journal for Numerical Methods in Engineering, 2011, 86(12): 1435-1456. doi: 10.1002/nme.3110
    [16]
    SADEGHIRAD A, BRANNON R M, GUILKEY J E. Second-order convected particle domain interpolation (CPDI2) with enrichment for weak discontinuities at material interfaces[J]. International Journal for Numerical Methods in Engineering, 2013, 95(11): 928-952. doi: 10.1002/nme.4526
    [17]
    PRUIJN N S. The improvement of the Material Point Method by Increasing Efficiency and Accuracy[D]. Delft: Delft University of Technology, 2016.
    [18]
    STEFFEN M, KIRBY R M, BERZINS M. Analysis and reduction of quadrature errors in the material point method (MPM)[J]. International Journal for Numerical Methods in Engineering, 2008, 76(6): 922-948. doi: 10.1002/nme.2360
    [19]
    STEFFEN M, WALLSTEDT P C, GUILKEY J E, et al. Examination and analysis of implementation choices within the material point method (MPM)[J]. Computer Modeling in Engineering and Sciences, 2008, 31(2): 107-127.
    [20]
    HU Y M, FANG Y, GE Z H, et al. A moving least squares material point method with displacement discontinuity and two-way rigid body coupling[J]. ACM Transactions on Graphics, 2018, 37(4): 1-14.
    [21]
    SONG J U, KIM H G. An improved material point method using moving least square shape functions[J]. Computational Particle Mechanics, 2021, 8(4): 751-766. doi: 10.1007/s40571-020-00368-9
    [22]
    WANG J F, SUN F X, CHENG Y M. An improved interpolating element-free Galerkin method with a nonsingular weight function for two-dimensional potential problems[J]. Chinese Physics B, 2012, 21(9): 090204. doi: 10.1088/1674-1056/21/9/090204
    [23]
    WANG J F, WANG J F, SUN F, et al. An interpolating boundary element-free method with nonsingular weight function for two-dimensional potential problems[J]. International Journal of Computational Methods, 2013, 10(6): 1350043. doi: 10.1142/S0219876213500436
    [24]
    WANG Q, ZHOU W, FENG Y T, et al. An adaptive orthogonal improved interpolating moving least-square method and a new boundary element-free method[J]. Applied Mathematics and Computation, 2019, 353: 347-370. doi: 10.1016/j.amc.2019.02.013
    [25]
    MIRZAEI D. Analysis of moving least squares approximation revisited[J]. Journal of Computational and Applied Mathematics, 2015, 282: 237-250. doi: 10.1016/j.cam.2015.01.007
    [26]
    TRAN Q A, SOŁOWSKI W, BERZINS M, et al. A convected particle least square interpolation material point method[J]. International Journal for Numerical Methods in Engineering, 2019, 121(6): 1068-1100.
    [27]
    WALLSTEDT P C, GUILKEY J E. An evaluation of explicit time integration schemes for use with the generalized interpolation material point method[J]. Journal of Computational Physics, 2008, 227(22): 9628-9642. doi: 10.1016/j.jcp.2008.07.019
    [28]
    WYSER E, ALKHIMENKOV Y, JABOYEDOFF M, et al. A fast and efficient MATLAB-based MPM solver: fMPMM-solver v1.1[J]. Geoscientific Model Development, 2020, 13(12): 6265-6284. doi: 10.5194/gmd-13-6265-2020
    [29]
    COOMBS W M, AUGARDE C. AMPLE: a material point learning environment[J]. Advances in Engineering Software, 2020, 139: 102748. doi: 10.1016/j.advengsoft.2019.102748
    [30]
    LUBE G, HUPPERT H E, SPARKS R S J, et al. Collapses of two-dimensional granular columns[J]. Physical Review E Statistical, Nonlinear, Biological and Soft Matter Physics, 2005, 72(4): 041301. doi: 10.1103/PhysRevE.72.041301
    [31]
    LUBE G, HUPPERT H E, SPARKS R S J, et al. Static and flowing regions in granular collapses down channels: insights from a sedimenting shallow water model[J]. Physics of Fluids, 2007, 19(10): 106601. doi: 10.1063/1.2773738
    [32]
    KAMATA H, MASHIMO H. Centrifuge model test of tunnel face reinforcement by bolting[J]. Tunnelling and Underground Space Technology, 2003, 18(2/3): 205-212.
    [33]
    CHENG X S, ZHENG G, SOGA K, et al. Post-failure behavior of tunnel heading collapse by MPM simulation[J]. Science China Technological Sciences, 2015, 58(12): 2139-2153. doi: 10.1007/s11431-015-5874-4
    [34]
    ZHANG Y J, ZHANG W G, XIA H S, et al. Case study and risk assessment of water inrush disaster in Qingdao Metro Line 4[J]. Applied Sciences, 2023, 13: 3384. doi: 10.3390/app13063384
    [35]
    YAN F Y, QIU W G, SUN K G, et al. Investigation of a large ground collapse, water inrush and mud outburst, and countermeasures during subway excavation in Qingdao: a case study[J]. Tunnelling and Underground Space Technology, 2021, 117: 104127. doi: 10.1016/j.tust.2021.104127
  • Related Articles

    [1]ZHAO Futang, WU Qixin, ZHENG Junjie, ZHENG Yewei. Generalized shear strain-based model for development of excess pore water pressure in saturated sand under anisotropic consolidation[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 315-323. DOI: 10.11779/CJGE20231122
    [2]TANG Zhao-guang, WANG Yong-zhi, WANG Meng-wei, SUN Rui, LIU Yuan-peng, YANG yang. Incremental model for pore water pressure and its applicability in centrifuge modelling[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 25-29. DOI: 10.11779/CJGE2022S2006
    [3]WANG Zhi-hua, HE Jian, GAO Hong-mei, WANG Bing-hui, SHEN Ji-rong. Dynamic pore water pressure model for liquefiable soils based on theory of thixotropic fluid[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2332-2340. DOI: 10.11779/CJGE201812023
    [4]WANG Xiang-ying, LIU Han-long, JIANG Qiang, CHEN Yu-min. Field tests on response of excess pore water pressures of liquefaction resistant rigid-drainage pile[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 645-651. DOI: 10.11779/CJGE201704008
    [5]CAO Zhen-zhong, LIU Hui-da, YUAN Xiao-ming. Liquefaction characteristics and mechanism of gravelly soils[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1165-1174. DOI: 10.11779/CJGE201607001
    [6]ZHOU En-quan, WANG Zhi-hua, CHEN Guo-xing, LÜ Cong. Constitutive model for fluid of post-liquefied sand[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 112-118. DOI: 10.11779/CJGE201501013
    [7]WANG Zhi-hua, LÜ Cong, XU Zhen-wei, ZHOU En-quan, CHEN Guo-xing. Thixotropy induced by vibration pore water pressure of saturated sands under cyclic loadings[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1831-1837. DOI: 10.11779/CJGE201410010
    [8]WANG Jun, CAI Yuan-qiang, GUO Lin, YANG Fang. Pore pressure and strain development of Wenzhou saturated soft soil under cyclic loading by stages[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1349-1354.
    [9]WANG Zhi-hua, ZHOU En-quan, CHEN Guo-xing. Fluid characteristics dependent on excess pore water pressure of saturated sand after growth of pore pressure[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(3): 528-533.
    [10]CHEN Guoxing, LIU Xuezhu. Study on dynamic pore water pressure in silty clay interbedded with fine sand of Nanjing[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 79-82.
  • Cited by

    Periodical cited type(4)

    1. 施静怡,吴能森,刘强. 静压桩在成层地基中挤土效应的可视化研究. 河南城建学院学报. 2024(02): 20-26 .
    2. 胡文强,周航,刘汉龙. XCC桩群桩沉桩挤土效应透明土模型试验研究. 土木与环境工程学报(中英文). 2024(06): 107-115 .
    3. 丁雪涛,潘殿琦,王明威. CPT阻力受土层界面效应影响的数值模拟. 实验室研究与探索. 2023(05): 26-31+36 .
    4. 田波,王昊武,权磊,谢晋德,朱旭伟. 基于CPT试验的多年冻土区路表变形风险评价. 公路交通科技. 2023(09): 1-7+53 .

    Other cited types(3)

Catalog

    Article views (349) PDF downloads (68) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return